Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism.

Johannes H G M van Beek, Farahaniza Supandi, Anand K Gavai, Albert A de Graaf, Thomas W Binsl, Hannes Hettling
Author Information
  1. Johannes H G M van Beek: Section Medical Genomics, Department of Clinical Genetics, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands. hans.van.beek@falw.vu.nl

Abstract

The human physiological system is stressed to its limits during endurance sports competition events. We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We calculated heat transfer by conduction and blood flow inside the body, and heat transfer from the skin by radiation, convection and sweat evaporation, resulting in temperature changes in 25 body compartments. We simulated a mountain time trial to Alpe d'Huez during the Tour de France. To approach the time realized by Lance Armstrong in 2004, very high oxygen uptake must be sustained by the simulated cyclist. Temperature was predicted to reach 39°C in the brain, and 39.7°C in leg muscle. In addition to the macroscopic simulation, we analysed the buffering of bursts of high adenosine triphosphate hydrolysis by creatine kinase during cyclical muscle activity at the biochemical pathway level. To investigate the low oxygen to carbohydrate ratio for the brain, which takes up lactate during exercise, we calculated the flux distribution in cerebral energy metabolism. Computational modelling of the human body, describing heat exchange and energy metabolism, makes simulation of endurance sports events feasible.

References

  1. Am J Physiol Cell Physiol. 2007 Sep;293(3):C815-29 [PMID: 17581855]
  2. PLoS Comput Biol. 2011 Aug;7(8):e1002130 [PMID: 21912519]
  3. J Cereb Blood Flow Metab. 2006 Jun;26(6):731-50 [PMID: 16395281]
  4. J Physiol. 2002 Apr 15;540(Pt 2):681-9 [PMID: 11956354]
  5. Science. 1981 Jan 30;211(4481):448-52 [PMID: 6450446]
  6. Biochem J. 1987 Jul 15;245(2):551-6 [PMID: 3663177]
  7. J Physiol. 1997 Jan 1;498 ( Pt 1):231-7 [PMID: 9023781]
  8. J Appl Physiol (1985). 2002 Oct;93(4):1337-44 [PMID: 12235033]
  9. Sports Med. 2010 Jan 1;40(1):27-39 [PMID: 20020785]
  10. J Physiol. 2008 Jan 1;586(1):35-44 [PMID: 17901124]
  11. Br J Sports Med. 2004 Dec;38(6):797-806 [PMID: 15562183]
  12. J Sci Med Sport. 2000 Dec;3(4):414-33 [PMID: 11235007]
  13. J Appl Physiol. 1966 Nov;21(6):1799-806 [PMID: 5929305]
  14. J Biol Chem. 1979 Jul 25;254(14):6528-37 [PMID: 36398]
  15. Eur J Appl Physiol. 2010 May;109(1):13-25 [PMID: 19787369]
  16. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1777-82 [PMID: 17267599]
  17. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;291(2):129-62 [PMID: 5234151]
  18. PLoS Comput Biol. 2007 Oct;3(10):1871-78 [PMID: 17922568]
  19. J Biomech. 1986;19(7):523-40 [PMID: 3745225]
  20. Int J Biochem Cell Biol. 2009 Oct;41(10):1837-45 [PMID: 19467914]
  21. Am J Physiol Cell Physiol. 2000 Jul;279(1):C213-24 [PMID: 10898733]
  22. J Physiol. 2004 Jan 15;554(Pt 2):571-8 [PMID: 14608005]
  23. FASEB J. 2008 Oct;22(10):3443-9 [PMID: 18653766]
  24. J Appl Physiol (1985). 1992 May;72(5):1854-9 [PMID: 1601794]
  25. Genome Biol. 2004;5(10):R80 [PMID: 15461798]
  26. Benef Microbes. 2010 Nov;1(4):391-405 [PMID: 21831778]
  27. J Cereb Blood Flow Metab. 2010 Jun;30(6):1240-6 [PMID: 20179724]
  28. J Physiol. 2002 Dec 1;545(2):697-704 [PMID: 12456844]
  29. J Appl Physiol (1985). 2005 Jun;98(6):2191-6 [PMID: 15774697]
  30. Biophys J. 1994 Nov;67(5):1912-24 [PMID: 7858128]
  31. J Appl Physiol. 1966 May;21(3):967-77 [PMID: 5912770]
  32. Am J Physiol. 1985 Feb;248(2 Pt 2):R190-6 [PMID: 3970234]
  33. Philos Trans A Math Phys Eng Sci. 2009 May 28;367(1895):1971-92 [PMID: 19380321]
  34. J Appl Physiol (1985). 1993 Aug;75(2):730-7 [PMID: 8226476]
  35. BMC Bioinformatics. 2010 Apr 29;11:213 [PMID: 20426874]
  36. Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1459-66 [PMID: 21297021]

MeSH Term

Adenosine Triphosphate
Athletes
Bicycling
Biophysics
Body Temperature
Computer Simulation
Energy Metabolism
Hot Temperature
Humans
Male
Models, Biological
Muscle, Skeletal
Physical Endurance
Sports
Time Factors

Chemicals

Adenosine Triphosphate

Word Cloud

Created with Highcharts 10.0.0energybodyheathumanendurancesportsmusclemetabolismeventsconversioncalculatedtransfersimulatedtimehighoxygenbrainsimulationmodellingphysiologicalsystemstressedlimitscompetitiondescribewholecomputationalmodelbicycleracing23percentmetabolicusedworkrestconvertedconductionbloodflowinsideskinradiationconvectionsweatevaporationresultingtemperaturechanges25compartmentsmountaintrialAlped'HuezTourdeFranceapproachrealizedLanceArmstrong2004uptakemustsustainedcyclistTemperaturepredictedreach39°C397°ClegadditionmacroscopicanalysedbufferingburstsadenosinetriphosphatehydrolysiscreatinekinasecyclicalactivitybiochemicalpathwaylevelinvestigatelowcarbohydrateratiotakeslactateexercisefluxdistributioncerebralComputationaldescribingexchangemakesfeasibleSimulatingphysiologyathletesevents:

Similar Articles

Cited By