Sequence variability of Rhizobiales orthologs and relationship with physico-chemical characteristics of proteins.

Humberto Peralta, Gabriela Guerrero, Alejandro Aguilar, Jaime Mora
Author Information
  1. Humberto Peralta: Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo, postal 565-A, Cuernavaca, Morelos, México.

Abstract

BACKGROUND: Chromosomal orthologs can reveal the shared ancestral gene set and their evolutionary trends. Additionally, physico-chemical properties of encoded proteins could provide information about functional adaptation and ecological niche requirements.
RESULTS: We analyzed 7080 genes (five groups of 1416 orthologs each) from Rhizobiales species (S. meliloti, R. etli, and M. loti, plant symbionts; A. tumefaciens, a plant pathogen; and B. melitensis, an animal pathogen). We evaluated their phylogenetic relationships and observed three main topologies. The first, with closer association of R. etli to A. tumefaciens; the second with R. etli closer to S. meliloti; and the third with A. tumefaciens and S. meliloti as the closest pair. This was not unusual, given the close relatedness of these three species. We calculated the synonymous (dS) and nonsynonymous (dN) substitution rates of these orthologs, and found that informational and metabolic functions showed relatively low dN rates; in contrast, genes from hypothetical functions and cellular processes showed high dN rates. An alternative measure of sequence variability, percentage of changes by species, was used to evaluate the most specific proportion of amino acid residues from alignments. When dN was compared with that measure a high correlation was obtained, revealing that much of evolutive information was extracted with the percentage of changes by species at the amino acid level. By analyzing the sequence variability of orthologs with a set of five properties (polarity, electrostatic charge, formation of secondary structures, molecular volume, and amino acid composition), we found that physico-chemical characteristics of proteins correlated with specific functional roles, and association of species did not follow their typical phylogeny, probably reflecting more adaptation to their life styles and niche preferences. In addition, orthologs with low dN rates had residues with more positive values of polarity, volume and electrostatic charge.
CONCLUSIONS: These findings revealed that even when orthologs perform the same function in each genomic background, their sequences reveal important evolutionary tendencies and differences related to adaptation.

References

  1. Science. 2010 Nov 12;330(6006):920-1 [PMID: 21071654]
  2. Genome Res. 2007 Aug;17(8):1178-85 [PMID: 17623808]
  3. Biol Direct. 2010 May 24;5:37 [PMID: 20497565]
  4. Science. 2001 Dec 14;294(5550):2323-8 [PMID: 11743194]
  5. Mol Microbiol. 2010 Mar;75(5):1078-89 [PMID: 20088865]
  6. Curr Issues Mol Biol. 2003 Apr;5(2):37-42 [PMID: 12793527]
  7. Mol Biol Evol. 2004 Jan;21(1):108-16 [PMID: 14595100]
  8. BMC Evol Biol. 2005 Oct 17;5:55 [PMID: 16229745]
  9. Genome Biol. 2006;7(4):R34 [PMID: 16640791]
  10. IUBMB Life. 2003 Apr-May;55(4-5):257-65 [PMID: 12880207]
  11. Proc Natl Acad Sci U S A. 2005 May 3;102(18):6395-400 [PMID: 15851683]
  12. BMC Syst Biol. 2011 Feb 25;5:33 [PMID: 21352515]
  13. Genome Biol Evol. 2010 Jul 12;2:190-9 [PMID: 20624725]
  14. Genome Biol. 2006;7(12):R114 [PMID: 17156429]
  15. Bioinformatics. 2003 Nov 1;19(16):2005-15 [PMID: 14594704]
  16. Brief Bioinform. 2011 Sep;12(5):379-91 [PMID: 21690100]
  17. Nat Rev Genet. 2006 Feb;7(2):98-108 [PMID: 16418745]
  18. BMC Genomics. 2009 Aug 25;10:397 [PMID: 19706172]
  19. J Bacteriol. 2011 Jan;193(2):460-72 [PMID: 21075924]
  20. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9716-21 [PMID: 15210978]
  21. J Bacteriol. 2005 Apr;187(8):2715-26 [PMID: 15805518]
  22. Proc Natl Acad Sci U S A. 1972 Apr;69(4):930-2 [PMID: 4502942]
  23. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 [PMID: 3162770]
  24. Science. 2001 Dec 14;294(5550):2317-23 [PMID: 11743193]
  25. Nat Rev Genet. 2008 Dec;9(12):965-74 [PMID: 18957969]
  26. BMC Genomics. 2007 Jun 12;8:163 [PMID: 17565672]
  27. BMC Evol Biol. 2003 Jan 6;3:1 [PMID: 12515583]
  28. Biol Direct. 2008 Oct 07;3:40 [PMID: 18840284]
  29. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43 [PMID: 16176987]
  30. Biotechniques. 2003 Feb;34(2):374-8 [PMID: 12613259]
  31. Genome Res. 2003 Oct;13(10):2229-35 [PMID: 14525925]
  32. Bioinformatics. 2005 Mar;21(6):703-10 [PMID: 15458983]
  33. Science. 2001 Jul 27;293(5530):668-72 [PMID: 11474104]
  34. PLoS One. 2010 Jul 08;5(7):e11486 [PMID: 20628610]
  35. Theor Popul Biol. 2002 Jun;61(4):435-47 [PMID: 12167363]
  36. Rev Latinoam Microbiol. 2005 Jan-Jun;47(1-2):43-60 [PMID: 17061545]
  37. FEBS Lett. 2005 Sep 26;579(23):5205-10 [PMID: 16165133]
  38. J Mol Biol. 1994 Mar 25;237(2):182-92 [PMID: 8126732]
  39. Comput Appl Biosci. 1997 Oct;13(5):555-6 [PMID: 9367129]
  40. Nature. 1988 Sep 8;335(6186):167-70 [PMID: 3412472]
  41. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):443-8 [PMID: 11756688]
  42. Science. 2010 Nov 5;330(6005):825-7 [PMID: 21051637]
  43. FEBS Lett. 2005 Mar 21;579(8):1772-8 [PMID: 15763550]
  44. HFSP J. 2007 May;1(1):67-78 [PMID: 19404461]
  45. DNA Res. 2000 Dec 31;7(6):331-8 [PMID: 11214968]
  46. Cell. 2008 Jul 25;134(2):341-52 [PMID: 18662548]
  47. Science. 2007 Sep 14;317(5844):1544-8 [PMID: 17702911]
  48. Nucleic Acids Res. 2008 Dec;36(21):6688-719 [PMID: 18948295]
  49. Nat Rev Microbiol. 2003 Nov;1(2):127-36 [PMID: 15035042]
  50. Trends Ecol Evol. 2000 Dec 1;15(12):496-503 [PMID: 11114436]
  51. J Mol Evol. 1996 May;42(5):587-96 [PMID: 8662011]
  52. Nat Rev Genet. 2010 Aug;11(8):572-82 [PMID: 20634811]
  53. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 [PMID: 7984417]
  54. Genome Res. 2002 Jun;12(6):962-8 [PMID: 12045149]
  55. Bioinformatics. 2009 Jun 15;25(12):i289-95 [PMID: 19478001]
  56. BMC Evol Biol. 2011 Jan 26;11:26 [PMID: 21269423]
  57. Appl Environ Microbiol. 2010 Mar;76(5):1604-14 [PMID: 20048063]
  58. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5849-56 [PMID: 9600883]
  59. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13148-53 [PMID: 12271122]
  60. Genome Biol. 2006;7(4):R31 [PMID: 16613613]
  61. Indian J Med Microbiol. 2008 Oct-Dec;26(4):313-21 [PMID: 18974482]
  62. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3834-9 [PMID: 16505379]

MeSH Term

Amino Acid Substitution
Bacterial Proteins
Chemical Phenomena
Chromosomes, Bacterial
Evolution, Molecular
Genes, Bacterial
Isoelectric Point
Membrane Proteins
Phylogeny
Protein Structure, Secondary
Rhizobiaceae
Sequence Alignment
Sequence Analysis, Protein
Sequence Homology, Amino Acid
Species Specificity
Synteny

Chemicals

Bacterial Proteins
Membrane Proteins

Word Cloud

Created with Highcharts 10.0.0orthologsspeciesdNratesphysico-chemicalproteinsadaptationSmelilotiRetlitumefaciensvariabilityaminoacidrevealsetevolutionarypropertiesinformationfunctionalnichegenesfiveRhizobialesplantpathogenthreecloserassociationfoundfunctionsshowedlowhighmeasuresequencepercentagechangesspecificresiduespolarityelectrostaticchargevolumecharacteristicsBACKGROUND:ChromosomalcansharedancestralgenetrendsAdditionallyencodedprovideecologicalrequirementsRESULTS:analyzed7080groups1416MlotisymbiontsBmelitensisanimalevaluatedphylogeneticrelationshipsobservedmaintopologiesfirstsecondthirdclosestpairunusualgivencloserelatednesscalculatedsynonymousdSnonsynonymoussubstitutioninformationalmetabolicrelativelycontrasthypotheticalcellularprocessesalternativeusedevaluateproportionalignmentscomparedcorrelationobtainedrevealingmuchevolutiveextractedlevelanalyzingformationsecondarystructuresmolecularcompositioncorrelatedrolesfollowtypicalphylogenyprobablyreflectinglifestylespreferencesadditionpositivevaluesCONCLUSIONS:findingsrevealedevenperformfunctiongenomicbackgroundsequencesimportanttendenciesdifferencesrelatedSequencerelationship

Similar Articles

Cited By