In vitro pharmacodynamics of vancomycin and cefazolin alone and in combination against methicillin-resistant Staphylococcus aureus.

Mao Hagihara, Dora E Wiskirchen, Joseph L Kuti, David P Nicolau
Author Information
  1. Mao Hagihara: Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA.

Abstract

Previous studies employing time-kill methods have observed synergistic effects against methicillin-resistant Staphylococcus aureus (MRSA) when a β-lactam is combined with vancomycin. However, these time-kill studies have neglected the importance of human-simulated exposures. We evaluated the effect of human simulated exposures of vancomycin at 1 g every 8 h (q8h) in combination with cefazolin at 1 g q8h against various MRSA isolates. Four clinical isolates (two MRSA isolates [vancomycin MICs, 0.5 and 2.0 μg/ml], a heterogeneous vancomycin-intermediate S. aureus [hVISA] isolate [MIC, 2.0 μg/ml], and a vancomycin-intermediate S. aureus [VISA] isolate [MIC, 8.0 μg/ml]) were evaluated in an in vitro pharmacodynamic model with a starting inoculum of 10(6) or 10(8) CFU/ml. Bacterial density was measured over 48 to 72 h. Time-kill curves were constructed, and the area under the bacterial killing and regrowth curve (AUBC) was calculated. During 10(6) CFU/ml studies, combination therapy achieved greater log(10) CFU/ml changes than vancomycin alone at 12 h (-4.31 ± 0.58 versus -2.80 ± 0.59, P < 0.001), but not at 48 h. Combination therapy significantly reduced the AUBC from 0 to 48 h (122 ± 14) compared with vancomycin alone (148 ± 22, P = 0.017). Similar results were observed during 10(8) CFU/ml studies, where combination therapy achieved greater log(10) CFU/ml changes at 12 h than vancomycin alone (-4.00 ± 0.20 versus -1.10 ± 0.04, P < 0.001) and significantly reduced the AUBC (275 ± 30 versus 429 ± 37, P < 0.001) after 72 h of incubation. In this study, the combination of vancomycin and cefazolin at human-simulated exposures improved the rate of kill against these MRSA isolates and resulted in greater overall antibacterial effect, but no differences in bacterial density were observed by the end of the experiments.

References

  1. Clin Pharmacokinet. 2004;43(13):925-42 [PMID: 15509186]
  2. J Antimicrob Chemother. 1997 May;39 Suppl A:47-51 [PMID: 9511062]
  3. Antimicrob Agents Chemother. 2008 Sep;52(9):3315-20 [PMID: 18591266]
  4. Antimicrob Agents Chemother. 1993 Feb;37(2):281-6 [PMID: 8452359]
  5. Clin Infect Dis. 1998 Jan;26(1):1-10; quiz 11-2 [PMID: 9455502]
  6. Antimicrob Agents Chemother. 2006 Apr;50(4):1372-5 [PMID: 16569854]
  7. Antimicrob Agents Chemother. 2000 Nov;44(11):3055-60 [PMID: 11036022]
  8. Antimicrob Agents Chemother. 1979 Nov;16(5):615-21 [PMID: 526003]
  9. J Clin Microbiol. 2004 Jun;42(6):2398-402 [PMID: 15184410]
  10. J Bacteriol. 1997 Apr;179(8):2557-66 [PMID: 9098053]
  11. Antimicrob Agents Chemother. 2004 Dec;48(12):4665-72 [PMID: 15561842]
  12. J Clin Microbiol. 2006 Nov;44(11):3883-6 [PMID: 16957043]
  13. J Antimicrob Chemother. 2009 Mar;63(3):485-8 [PMID: 19109338]
  14. Antimicrob Agents Chemother. 1987 Mar;31(3):393-7 [PMID: 3579256]
  15. J Biol Chem. 1994 Nov 4;269(44):27246-50 [PMID: 7961632]
  16. Antimicrob Agents Chemother. 2007 Jul;51(7):2582-6 [PMID: 17452488]
  17. Antimicrob Agents Chemother. 1999 Jul;43(7):1747-53 [PMID: 10390234]
  18. Antimicrob Agents Chemother. 1997 Jun;41(6):1281-7 [PMID: 9174184]
  19. Pediatr Neurosurg. 2007;43(6):449-55 [PMID: 17992031]
  20. J Antimicrob Chemother. 2001 Nov;48(5):727-30 [PMID: 11679564]
  21. Arch Intern Med. 2006 Oct 23;166(19):2138-44 [PMID: 17060545]
  22. Antimicrob Agents Chemother. 2006 Sep;50(9):2951-6 [PMID: 16940087]
  23. J Antimicrob Chemother. 2007 Oct;60(4):788-94 [PMID: 17623693]
  24. J Infect Dis. 1973 Oct;128:Suppl:S415-2 [PMID: 4744024]
  25. Clin Infect Dis. 2004 Feb 15;38(4):521-8 [PMID: 14765345]
  26. J Antimicrob Chemother. 2005 Oct;56(4):709-16 [PMID: 16120625]
  27. Clin Infect Dis. 2008 Jan 15;46(2):193-200 [PMID: 18171250]
  28. Clin Infect Dis. 2004 Feb 1;38(3):448-51 [PMID: 14727222]
  29. Antimicrob Agents Chemother. 2011 Feb;55(2):867-73 [PMID: 21078943]
  30. Antimicrob Agents Chemother. 2006 Sep;50(9):3039-47 [PMID: 16940100]
  31. DICP. 1991 Jul-Aug;25(7-8):713-5 [PMID: 1949924]
  32. Antimicrob Agents Chemother. 1990 Jun;34(6):1227-31 [PMID: 2393284]
  33. Clin Infect Dis. 2011 Apr 15;52(8):975-81 [PMID: 21460309]
  34. J Antimicrob Chemother. 1985 Jan;15 Suppl A:125-30 [PMID: 3980323]
  35. Clin Infect Dis. 2005 Jun 1;40(11):1705-6 [PMID: 15889380]
  36. Antimicrob Agents Chemother. 1984 Sep;26(3):347-50 [PMID: 6334490]
  37. Antimicrob Agents Chemother. 2004 Dec;48(12):4566-73 [PMID: 15561827]

MeSH Term

Anti-Bacterial Agents
Area Under Curve
Cefazolin
Colony Count, Microbial
Culture Media
Drug Interactions
Humans
Methicillin Resistance
Methicillin-Resistant Staphylococcus aureus
Microbial Sensitivity Tests
Models, Biological
Staphylococcal Infections
Vancomycin

Chemicals

Anti-Bacterial Agents
Culture Media
Vancomycin
Cefazolin

Word Cloud

Created with Highcharts 10.0.00±vancomycinh10combinationCFU/mlstudiesaureusMRSA8isolatesalonePobservedexposurescefazolinμg/ml]48AUBCtherapygreaterversus<001time-killmethicillin-resistantStaphylococcushuman-simulatedevaluatedeffect1gq8h2vancomycin-intermediateSisolate[MICvitro6density72bacterialachievedlogchanges12-4significantlyreducedPreviousemployingmethodssynergisticeffectsβ-lactamcombinedHoweverneglectedimportancehumansimulatedeveryvariousFourclinicaltwo[vancomycinMICs5heterogeneous[hVISA][VISA]pharmacodynamicmodelstartinginoculumBacterialmeasuredTime-killcurvesconstructedareakillingregrowthcurvecalculated3158-28059Combination12214compared14822=017Similarresults0020-1042753042937incubationstudyimprovedratekillresultedoverallantibacterialdifferencesendexperimentspharmacodynamics

Similar Articles

Cited By