Construction of gene regulatory networks using biclustering and Bayesian networks.

Fadhl M Alakwaa, Nahed H Solouma, Yasser M Kadah
Author Information
  1. Fadhl M Alakwaa: University of Science and Technology, Sana'a, Yemen. fadlwork@gmail.com

Abstract

BACKGROUND: Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling.
RESULTS: In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus) to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method.
CONCLUSIONS: Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.

References

  1. Bioinformatics. 2001 Apr;17(4):309-18 [PMID: 11301299]
  2. Bioinformatics. 2006 May 1;22(9):1122-9 [PMID: 16500941]
  3. J Comput Biol. 2000;7(3-4):601-20 [PMID: 11108481]
  4. Proc Int Conf Intell Syst Mol Biol. 2000;8:93-103 [PMID: 10977070]
  5. Bioinformatics. 2003 Mar 1;19(4):459-66 [PMID: 12611800]
  6. Pac Symp Biocomput. 2003;:77-88 [PMID: 12603019]
  7. Bioinformatics. 2006 Jun 1;22(11):1367-74 [PMID: 16543279]
  8. Ann N Y Acad Sci. 2009 Mar;1158:159-95 [PMID: 19348640]
  9. BMC Bioinformatics. 2005 Sep 14;6:227 [PMID: 16162296]
  10. Bioinformatics. 2007 Sep 1;23(17):2342-4 [PMID: 17586826]
  11. Mol Biol Cell. 2000 Dec;11(12):4241-57 [PMID: 11102521]
  12. Nat Genet. 1999 Jul;22(3):281-5 [PMID: 10391217]
  13. Sci STKE. 2005 Apr 26;2005(281):pl4 [PMID: 15855409]
  14. Ann N Y Acad Sci. 2009 Mar;1158:143-58 [PMID: 19348639]
  15. Pac Symp Biocomput. 1999;:29-40 [PMID: 10380183]
  16. Bioinformatics. 2001 Jun;17(6):520-5 [PMID: 11395428]
  17. Bioinformatics. 2002 Feb;18(2):319-20 [PMID: 11847080]
  18. Bioinformatics. 2005 Apr 15;21(8):1626-34 [PMID: 15613398]
  19. Bioinformatics. 2008 Jan 15;24(2):282-4 [PMID: 18006545]
  20. PLoS Pathog. 2008 Feb 8;4(2):e32 [PMID: 18282095]
  21. IEEE/ACM Trans Comput Biol Bioinform. 2004 Jan-Mar;1(1):24-45 [PMID: 17048406]
  22. BMC Bioinformatics. 2006 Jun 02;7:280 [PMID: 16749936]
  23. Bioinformatics. 2000 Aug;16(8):707-26 [PMID: 11099257]
  24. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  25. J Comput Biol. 2003;10(3-4):373-84 [PMID: 12935334]
  26. Bioinformatics. 2005 Aug 15;21(16):3448-9 [PMID: 15972284]
  27. Bioinformatics. 2007 Feb 1;23(3):392-3 [PMID: 17138585]
  28. Bioinformatics. 2006 May 15;22(10):1282-3 [PMID: 16551664]
  29. Mol Biol Cell. 1998 Dec;9(12):3273-97 [PMID: 9843569]
  30. Bioinformatics. 2002;18 Suppl 1:S136-44 [PMID: 12169541]
  31. BMC Bioinformatics. 2003 Jan 13;4:2 [PMID: 12525261]
  32. Genome Biol. 2006;7(5):R36 [PMID: 16686963]
  33. Nat Genet. 2002 Aug;31(4):370-7 [PMID: 12134151]
  34. Pac Symp Biocomput. 1999;:41-52 [PMID: 10380184]
  35. Bioinformatics. 2009 Jun 15;25(12):i110-8 [PMID: 19477976]
  36. Bioinformatics. 2007 Jan 1;23(1):50-6 [PMID: 17090578]
  37. Nature. 1969 Oct 11;224(5215):177-8 [PMID: 5343519]

MeSH Term

Algorithms
Bayes Theorem
Cluster Analysis
Databases, Genetic
Gene Regulatory Networks
Linear Models
ROC Curve
Reproducibility of Results
Saccharomyces cerevisiae

Word Cloud

Created with Highcharts 10.0.0genebiclusteringnetworksGRNdatasystemsregulatoryGRNsgenome-widemicroarraysmodellingproblemspreviousmethodsresultsBACKGROUND:UnderstandinginteractionscomplexlivingcanseenultimategoalbiologyrevolutionHenceelucidatediseaseontologyfullyreducecostdrugdevelopmentconstructedlastdecademanyinferencealgorithmsbaseddevelopedunravelcomplexityregulationTimeseriestranscriptomicmeasuredDNAtraditionallyusedOnemajordatasetconsistsrelativelytimepointsrespectlargenumbergenesDimensionalityoneinterestingRESULTS:paperdevelopfunctionenrichmentanalysistoolboxBicAT-plusstudyeffectreducingdimensionsnetworkgeneratedsystemvalidatedviaavailableinteractiondatabasescomparedrevealedperformanceproposedmethodCONCLUSIONS:sparsenaturetechniquesdiffersignificantlyConstructionusingBayesian

Similar Articles

Cited By