Automatic data binning for improved visual diagnosis of pharmacometric models.

Marc Lavielle, Kevin Bleakley
Author Information
  1. Marc Lavielle: INRIA Saclay and University Paris-Sud, Orsay, France. Marc.Lavielle@math.u-psud.fr

Abstract

Visual Predictive Checks (VPC) are graphical tools to help decide whether a given model could have plausibly generated a given set of real data. Typically, time-course data is binned into time intervals, then statistics are calculated on the real data and data simulated from the model, and represented graphically for each interval. Poor selection of bins can easily lead to incorrect model diagnosis. We propose an automatic binning strategy that improves reliability of model diagnosis using VPC. It is implemented in version 4 of the MONOLIX: software.

References

  1. J Pharmacokinet Pharmacodyn. 2001 Apr;28(2):171-92 [PMID: 11381569]
  2. J Clin Pharmacol. 2012 Jan;52(1):39-54 [PMID: 21257797]
  3. J Pharmacokinet Pharmacodyn. 2008 Apr;35(2):185-202 [PMID: 18197467]
  4. AAPS J. 2011 Jun;13(2):143-51 [PMID: 21302010]
  5. Clin Pharmacol Ther. 2007 Jul;82(1):17-20 [PMID: 17571070]

MeSH Term

Computer Simulation
Data Display
Models, Biological
Pharmacology
Software
Time Factors

Word Cloud

Created with Highcharts 10.0.0datamodeldiagnosisVPCgivenrealbinningVisualPredictiveChecksgraphicaltoolshelpdecidewhetherplausiblygeneratedsetTypicallytime-coursebinnedtimeintervalsstatisticscalculatedsimulatedrepresentedgraphicallyintervalPoorselectionbinscaneasilyleadincorrectproposeautomaticstrategyimprovesreliabilityusingimplementedversion4MONOLIX:softwareAutomaticimprovedvisualpharmacometricmodels

Similar Articles

Cited By