Functional selectivity in CB(2) cannabinoid receptor signaling and regulation: implications for the therapeutic potential of CB(2) ligands.

Brady K Atwood, James Wager-Miller, Christopher Haskins, Alex Straiker, Ken Mackie
Author Information
  1. Brady K Atwood: Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA.

Abstract

Receptor internalization increases the flexibility and scope of G protein-coupled receptor (GPCR) signaling. CB(1) and CB(2) cannabinoid receptors undergo internalization after sustained exposure to agonists. However, it is not known whether different agonists internalize CB(2) to different extents. Because CB(2) is a promising therapeutic target, understanding its trafficking in response to different agonists is necessary for a complete understanding of its biology. Here we profile a number of cannabinoid receptor ligands and provide evidence for marked functional selectivity of cannabinoid receptor internalization. Classic, aminoalkylindole, bicyclic, cannabilactone, iminothiazole cannabinoid, and endocannabinoid ligands varied greatly in their effects on CB(1) and CB(2) trafficking. Our most striking finding was that (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone (WIN55,212-2) (and other aminoalkylindoles) failed to promote CB(2) receptor internalization, whereas 5-(1,1-dimethylheptyl)-2-(5-hydroxy-2-(3-hydroxypropyl)cyclohexyl)phenol (CP55,940) robustly internalized CB(2) receptors. Furthermore, WIN55,212-2 competitively antagonized CP55,940-induced CB(2) internalization. Despite these differences in internalization, both compounds activated CB(2) receptors as measured by extracellular signal-regulated kinase 1/2 phosphorylation and recruitment of β-arrestin(2) to the membrane. In contrast, whereas CP55,940 inhibited voltage-gated calcium channels via CB(2) receptor activation, WIN55,212-2 was ineffective on its own and antagonized the effects of CP55,940. On the basis of the differences we found between these two ligands, we also tested the effects of other cannabinoids on these signaling pathways and found additional evidence for functional selectivity of CB(2) ligands. These novel data highlight that WIN55,212-2 and other cannabinoids show strong functional selectivity at CB(2) receptors and suggest that different classes of CB(2) ligands may produce diverse physiological effects, emphasizing that each class needs to be separately evaluated for therapeutic efficacy.

References

  1. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9371-6 [PMID: 11470906]
  2. FEBS Lett. 1995 Nov 13;375(1-2):143-7 [PMID: 7498464]
  3. Neuropharmacology. 2008 Jan;54(1):36-44 [PMID: 17681354]
  4. Mol Pharmacol. 1995 Sep;48(3):443-50 [PMID: 7565624]
  5. Handb Exp Pharmacol. 2005;(168):299-325 [PMID: 16596779]
  6. Br J Pharmacol. 2007 Aug;151(7):1061-70 [PMID: 17549048]
  7. Br J Pharmacol. 2010 Jun;160(3):677-87 [PMID: 20590571]
  8. Neuroscience. 2005;135(1):235-45 [PMID: 16084654]
  9. Pharmacol Biochem Behav. 2011 Jun;98(4):493-502 [PMID: 21382397]
  10. Neuropharmacology. 2001;40(2):221-32 [PMID: 11114401]
  11. Nat Chem Biol. 2009 Jan;5(1):37-44 [PMID: 19029917]
  12. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10529-33 [PMID: 12917492]
  13. J Med Chem. 2007 Dec 27;50(26):6493-500 [PMID: 18038967]
  14. BMC Neurol. 2006 Mar 02;6:12 [PMID: 16512913]
  15. Mol Pharmacol. 2005 May;67(5):1697-704 [PMID: 15710746]
  16. Br J Pharmacol. 2008 Jan;153(2):299-308 [PMID: 17982478]
  17. Chem Biol. 2007 Dec;14(12):1347-56 [PMID: 18096503]
  18. Curr Drug Targets CNS Neurol Disord. 2005 Dec;4(6):615-23 [PMID: 16375679]
  19. J Neurochem. 1999 Aug;73(2):493-501 [PMID: 10428044]
  20. Neuron. 2001 Dec 6;32(5):829-39 [PMID: 11738029]
  21. Br J Pharmacol. 2010 Jun;160(3):467-79 [PMID: 20590558]
  22. Arch Gen Psychiatry. 2001 Apr;58(4):322-8 [PMID: 11296091]
  23. Nat Rev Drug Discov. 2010 May;9(5):373-86 [PMID: 20431569]
  24. Brain Res Rev. 2009 Apr;60(1):255-66 [PMID: 19150370]
  25. Curr Opin Neurobiol. 2003 Jun;13(3):348-53 [PMID: 12850220]
  26. J Pharmacol Exp Ther. 1998 May;285(2):651-8 [PMID: 9580609]
  27. Eur J Neurosci. 2003 Jun;17(12):2750-4 [PMID: 12823482]
  28. Trends Pharmacol Sci. 2011 Oct;32(10):581-90 [PMID: 21925742]
  29. J Neurosci. 2005 Mar 9;25(10):2530-6 [PMID: 15758162]
  30. Br J Pharmacol. 2010 Jun;160(3):585-93 [PMID: 20100276]
  31. Biochim Biophys Acta. 2002 Jul 19;1576(3):255-64 [PMID: 12084572]
  32. Nat Neurosci. 2011 Jul 24;14(9):1160-6 [PMID: 21785434]
  33. J Biol Chem. 1999 Jul 16;274(29):20397-405 [PMID: 10400664]
  34. Br J Pharmacol. 2005 Dec;146(7):917-26 [PMID: 16205722]
  35. Expert Rev Mol Med. 2009 Jan 20;11:e3 [PMID: 19152719]
  36. Biochim Biophys Acta. 2011 Aug;1813(8):1554-60 [PMID: 21640764]
  37. Eur J Pharmacol. 2004 Nov 28;505(1-3):1-9 [PMID: 15556131]
  38. J Pharmacol Exp Ther. 2007 Jan;320(1):1-13 [PMID: 16803859]
  39. J Neurochem. 2008 Feb;104(4):1132-43 [PMID: 17986216]
  40. J Pharmacol Exp Ther. 2000 Mar;292(3):886-94 [PMID: 10688601]
  41. Chem Biol. 2011 Aug 26;18(8):1053-64 [PMID: 21867920]
  42. Pharmacol Rev. 2002 Jun;54(2):161-202 [PMID: 12037135]
  43. J Pharmacol Exp Ther. 2009 Jan;328(1):141-51 [PMID: 18931146]
  44. Pharmacol Ther. 2008 Feb;117(2):199-206 [PMID: 18076994]
  45. J Pharmacol Exp Ther. 2005 Nov;315(2):828-38 [PMID: 16081674]
  46. Mol Pharmacol. 2005 Jan;67(1):280-7 [PMID: 15475572]
  47. Br J Pharmacol. 1999 Feb;126(3):665-72 [PMID: 10188977]
  48. Chem Phys Lipids. 2000 Nov;108(1-2):169-90 [PMID: 11106790]
  49. Neuron. 1999 Aug;23(4):737-46 [PMID: 10482240]
  50. PLoS Biol. 2007 Oct;5(10):e269 [PMID: 17927447]
  51. Eur J Pharmacol. 2011 Jun 1;659(2-3):139-45 [PMID: 21333643]
  52. EMBO J. 1997 Aug 1;16(15):4606-16 [PMID: 9303305]

Grants

  1. UL1 RR025761/NCRR NIH HHS
  2. DA011322/NIDA NIH HHS
  3. R01 DA011322/NIDA NIH HHS
  4. P01 DA009158/NIDA NIH HHS
  5. DA009158/NIDA NIH HHS
  6. K05 DA021696/NIDA NIH HHS
  7. DA021696/NIDA NIH HHS
  8. RR025761/NCRR NIH HHS

MeSH Term

Benzoxazines
Calcium Channel Blockers
Cannabinoids
Drug Design
Endocytosis
Humans
Ligands
MAP Kinase Signaling System
Morpholines
Naphthalenes
Protein Transport
Receptor, Cannabinoid, CB2
Substrate Specificity

Chemicals

Benzoxazines
Calcium Channel Blockers
Cannabinoids
Ligands
Morpholines
Naphthalenes
Receptor, Cannabinoid, CB2
(3R)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone

Word Cloud

Created with Highcharts 10.0.0CB2internalizationreceptorligandscannabinoidreceptorsdifferentselectivityeffectsWIN55212-2CP55signaling1agoniststherapeuticfunctional940understandingtraffickingevidencewhereasantagonizeddifferencesfoundcannabinoidsReceptorincreasesflexibilityscopeGprotein-coupledGPCRundergosustainedexposureHoweverknownwhetherinternalizeextentspromisingtargetresponsenecessarycompletebiologyprofilenumberprovidemarkedClassicaminoalkylindolebicycliccannabilactoneiminothiazoleendocannabinoidvariedgreatlystrikingfindingR-+-[23-dihydro-5-methyl-3-4-morpholinylmethylpyrrolo-[13-de]-14-benzoxazin-6-yl]-1-naphthalenyl-methanoneaminoalkylindolesfailedpromote5-1-dimethylheptyl-2-5-hydroxy-2-3-hydroxypropylcyclohexylphenolrobustlyinternalizedFurthermorecompetitively940-inducedDespitecompoundsactivatedmeasuredextracellularsignal-regulatedkinase1/2phosphorylationrecruitmentβ-arrestinmembranecontrastinhibitedvoltage-gatedcalciumchannelsviaactivationineffectivebasistwoalsotestedpathwaysadditionalnoveldatahighlightshowstrongsuggestclassesmayproducediversephysiologicalemphasizingclassneedsseparatelyevaluatedefficacyFunctionalregulation:implicationspotential

Similar Articles

Cited By