Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression.

B Scaggiante, B Dapas, S Bonin, M Grassi, C Zennaro, R Farra, L Cristiano, S Siracusano, F Zanconati, C Giansante, G Grassi
Author Information
  1. B Scaggiante: Molecular Biology Section, Department of Life Sciences, University of Trieste, Via Giorgieri, 1, Trieste 34127, Italy. bscaggiante@units.it

Abstract

BACKGROUND: In prostate adenocarcinoma, the dissection of the expression behaviour of the eukaryotic elongation factors (eEF1A1/2) has not yet fully elucidated.
METHODS: The EEF1A1/A2 expressions were investigated by real-time PCR, western blotting (cytoplasmic and cytoskeletal/nuclear-enriched fractions) and immunofluorescence in the androgen-responsive LNCaP and the non-responsive DU-145 and PC-3 cells, displaying a low, moderate and high aggressive phenotype, respectively. Targeted experiments were also conducted in the androgen-responsive 22Rv1, a cell line marking the progression towards androgen-refractory tumour. The non-tumourigenic prostate PZHPV-7 cell line was the control.
RESULTS: Compared with PZHPV-7, cancer cells showed no major variations in EEF1A1 mRNA; eEF1A1 protein increased only in cytoskeletal/nuclear fraction. On the contrary, a significant rise of EEF1A2 mRNA and protein were found, with the highest levels detected in LNCaP. Eukaryotic elongation factor 1A2 immunostaining confirmed the western blotting results. Pilot evaluation in archive prostate tissues showed the presence of EEF1A2 mRNA in near all neoplastic and perineoplastic but not in normal samples or in benign adenoma; in contrast, EEF1A1 mRNA was everywhere detectable.
CONCLUSION: Eukaryotic elongation factor 1A2 switch-on, observed in cultured tumour prostate cells and in human prostate tumour samples, may represent a feature of prostate cancer; in contrast, a minor involvement is assigned to EEF1A1. These observations suggest to consider EEF1A2 as a marker for prostate cell transformation and/or possibly as a hallmark of cancer progression.

References

  1. Biochim Biophys Acta. 2005 Feb 14;1727(2):116-24 [PMID: 15716006]
  2. J Cell Physiol. 2003 Jun;195(3):337-45 [PMID: 12704643]
  3. Cell Death Differ. 2009 Jan;16(1):139-50 [PMID: 18820646]
  4. Eur J Biochem. 2003 Aug;270(15):3251-62 [PMID: 12869201]
  5. Cancer Invest. 2001;19(7):678-83 [PMID: 11577808]
  6. Circ Res. 2008 Sep 12;103(6):591-7 [PMID: 18688046]
  7. Int J Biochem Cell Biol. 2008;40(1):63-71 [PMID: 17936057]
  8. Biochem Biophys Res Commun. 2009 Feb 27;380(1):11-6 [PMID: 19138673]
  9. Genes Cells. 2008 Jun;13(6):593-607 [PMID: 18459963]
  10. Gastroenterology. 2008 Oct;135(4):1322-32 [PMID: 18722373]
  11. Biochimie. 2009 Mar;91(3):373-82 [PMID: 19041685]
  12. EMBO J. 2004 Dec 8;23(24):4709-16 [PMID: 15538380]
  13. Nat Struct Mol Biol. 2005 Sep;12(9):772-8 [PMID: 16116436]
  14. Chin Med J (Engl). 2010 Feb 20;123(4):431-7 [PMID: 20193482]
  15. Breast Cancer Res Treat. 2007 Mar;102(1):31-41 [PMID: 16897428]
  16. Oncogene. 2005 Apr 18;24(17):2776-86 [PMID: 15838514]
  17. J Cell Sci. 1996 Nov;109 ( Pt 11):2705-14 [PMID: 8937988]
  18. Biochimie. 2007 Dec;89(12):1544-52 [PMID: 17825975]
  19. Prostate. 2004 Dec 1;61(4):332-53 [PMID: 15389811]
  20. Biotechniques. 1991 Sep;11(3):304, 306, 308 [PMID: 1718327]
  21. Br J Cancer. 2007 Mar 26;96(6):970-9 [PMID: 17375037]
  22. Lab Invest. 2009 Aug;89(8):867-74 [PMID: 19506553]
  23. Cancer Res. 2004 Aug 1;64(15):5311-21 [PMID: 15289337]
  24. Ann N Y Acad Sci. 2009 Aug;1171:87-93 [PMID: 19723040]
  25. Eur J Biochem. 1993 Aug 1;215(3):549-54 [PMID: 8354261]
  26. Mol Med. 2009 Nov-Dec;15(11-12):363-70 [PMID: 19707524]
  27. Biotechniques. 1998 Feb;24(2):271-6 [PMID: 9494729]
  28. Diagn Mol Pathol. 2010 Jun;19(2):112-22 [PMID: 20502189]
  29. Nat Rev Cancer. 2001 Oct;1(1):34-45 [PMID: 11900250]
  30. FEBS J. 2006 Apr;273(7):1350-61 [PMID: 16689924]

MeSH Term

Base Sequence
Blotting, Western
Cell Line, Tumor
Cell Transformation, Neoplastic
DNA Primers
Fluorescent Antibody Technique
Humans
Male
Paraffin Embedding
Peptide Elongation Factor 1
Prostatic Neoplasms
RNA, Messenger
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction

Chemicals

DNA Primers
EEF1A1 protein, human
EEF1A2 protein, human
Peptide Elongation Factor 1
RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0prostatecancermRNAEEF1A2elongationcellscellprogressiontumourEEF1A1expressionwesternblottingandrogen-responsiveLNCaPlinePZHPV-7showedproteinEukaryoticfactor1A2samplescontrasthumantransformationhallmarkBACKGROUND:adenocarcinomadissectionbehavioureukaryoticfactorseEF1A1/2yetfullyelucidatedMETHODS:EEF1A1/A2expressionsinvestigatedreal-timePCRcytoplasmiccytoskeletal/nuclear-enrichedfractionsimmunofluorescencenon-responsiveDU-145PC-3displayinglowmoderatehighaggressivephenotyperespectivelyTargetedexperimentsalsoconducted22Rv1markingtowardsandrogen-refractorynon-tumourigeniccontrolRESULTS:ComparedmajorvariationseEF1A1increasedcytoskeletal/nuclearfractioncontrarysignificantrisefoundhighestlevelsdetectedimmunostainingconfirmedresultsPilotevaluationarchivetissuespresencenearneoplasticperineoplasticnormalbenignadenomaeverywheredetectableCONCLUSION:switch-onobservedculturedmayrepresentfeatureminorinvolvementassignedobservationssuggestconsidermarkerand/orpossiblyDissectingEEF1A1/2genescells:potential

Similar Articles

Cited By