Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors.

Yuliang Liu, Michael S Lee, Mark A Olson, Ronald N Harty
Author Information
  1. Yuliang Liu: Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.

Abstract

Virus-host interactions play key roles in promoting efficient egress of many RNA viruses, including Ebola virus (EBOV or "e") and Marburg virus (MARV or "m"). Late- (L-) domains conserved in viral matrix proteins recruit specific host proteins, such as Tsg101 and Nedd4, to facilitate the budding process. These interactions serve as attractive targets for the development of broad-spectrum budding inhibitors. A major gap still exists in our understanding of the mechanism of filovirus budding due to the difficulty in detecting virus-host complexes and mapping their trafficking patterns in the natural environment of the cell. To address this gap, we used a bimolecular complementation (BiMC) approach to detect, localize, and follow the trafficking patterns of eVP40-Tsg101 complexes in live mammalian cells. In addition, we used the BiMC approach along with a VLP budding assay to test small molecule inhibitors identified by in silico screening for their ability to block eVP40 PTAP-mediated interactions with Tsg101 and subsequent budding of eVP40 VLPs. We demonstrated the potential broad spectrum activity of a lead candidate inhibitor by demonstrating its ability to block PTAP-dependent binding of HIV-1 Gag to Tsg101 and subsequent egress of HIV-1 Gag VLPs.

References

  1. Methods Cell Biol. 2008;85:431-70 [PMID: 18155474]
  2. Nat Struct Biol. 2002 Nov;9(11):812-7 [PMID: 12379843]
  3. Cell Mol Life Sci. 2008 Mar;65(5):756-76 [PMID: 18158582]
  4. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  5. J Virol. 2010 Jul;84(14):7053-63 [PMID: 20463076]
  6. J Virol. 2002 May;76(10):4855-65 [PMID: 11967302]
  7. J Virol. 2008 May;82(10):4884-97 [PMID: 18321968]
  8. Virol J. 2006 May 23;3:31 [PMID: 16719918]
  9. Nat Chem Biol. 2006 Jun;2(6):329-37 [PMID: 16680159]
  10. Virol J. 2005 Dec 20;2:92 [PMID: 16367999]
  11. J Virol. 2005 Apr;79(8):4709-19 [PMID: 15795257]
  12. J Virol. 2003 Apr;77(8):4794-804 [PMID: 12663786]
  13. Cell. 2001 Oct 5;107(1):55-65 [PMID: 11595185]
  14. Cell. 2001 Jul 27;106(2):145-55 [PMID: 11511343]
  15. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18718-23 [PMID: 18003913]
  16. J Virol. 2010 Aug;84(15):7847-56 [PMID: 20504928]
  17. J Biol Chem. 2011 May 6;286(18):15854-61 [PMID: 21454542]
  18. J Virol. 2004 Jul;78(14):7344-51 [PMID: 15220407]
  19. BMC Bioinformatics. 2008 Feb 27;9:126 [PMID: 18304355]
  20. J Virol. 2010 Mar;84(5):2294-303 [PMID: 20032189]
  21. Nat Rev Mol Cell Biol. 2006 Jun;7(6):449-56 [PMID: 16625152]
  22. ACS Chem Biol. 2008 Dec 19;3(12):745-7 [PMID: 19099395]
  23. Virology. 2008 Dec 5;382(1):107-14 [PMID: 18929379]
  24. Antiviral Res. 2009 Mar;81(3):189-97 [PMID: 19114059]
  25. Virology. 2005 Jun 5;336(2):291-8 [PMID: 15892969]
  26. J Comput Chem. 2009 Jul 30;30(10):1545-614 [PMID: 19444816]
  27. J Gen Virol. 2010 Jan;91(Pt 1):228-34 [PMID: 19812267]
  28. Nat Biotechnol. 2002 Jan;20(1):87-90 [PMID: 11753368]
  29. J Chem Inf Model. 2005 Jan-Feb;45(1):177-82 [PMID: 15667143]
  30. J Virol. 2011 Apr;85(7):3106-19 [PMID: 21270170]
  31. J Virol. 2007 May;81(9):4895-9 [PMID: 17301151]
  32. ACS Chem Biol. 2008 Dec 19;3(12):757-64 [PMID: 19053244]
  33. Assay Drug Dev Technol. 2003 Dec;1(6):811-22 [PMID: 15090227]
  34. J Virol. 2009 Mar;83(5):2327-37 [PMID: 19091859]
  35. Clin Lab Med. 2010 Mar;30(1):161-77 [PMID: 20513546]
  36. J Mol Graph Model. 2005 Apr;23(5):395-407 [PMID: 15781182]
  37. J Virol. 2003 Feb;77(3):1812-9 [PMID: 12525615]
  38. J Virol. 2011 Sep;85(17):8502-13 [PMID: 21697477]
  39. Am J Transl Res. 2009 Jan 05;1(1):87-98 [PMID: 19966942]
  40. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13871-6 [PMID: 11095724]
  41. J Virol. 2003 Sep;77(18):9987-92 [PMID: 12941909]
  42. J Med Chem. 2004 Jan 15;47(2):337-44 [PMID: 14711306]
  43. Virology. 2008 Mar 15;372(2):221-32 [PMID: 18063004]
  44. Antiviral Res. 2003 Jan;57(1-2):53-60 [PMID: 12615303]
  45. J Virol. 2003 Sep;77(17):9173-82 [PMID: 12915533]
  46. J Biol Chem. 2008 Oct 31;283(44):29822-30 [PMID: 18723511]
  47. Nat Med. 2001 Dec;7(12):1313-9 [PMID: 11726971]
  48. Mol Cell. 2002 Apr;9(4):789-98 [PMID: 11983170]
  49. Antiviral Res. 2009 Sep;83(3):245-51 [PMID: 19523489]
  50. J Mol Biol. 2003 Feb 14;326(2):493-502 [PMID: 12559917]
  51. J Infect Dis. 2011 Nov;204 Suppl 3:S817-24 [PMID: 21987757]

Grants

  1. R21 AI090284/NIAID NIH HHS
  2. R21 AI077014-01/NIAID NIH HHS
  3. R21 AI090284-01/NIAID NIH HHS
  4. R21 AI077014-02/NIAID NIH HHS
  5. R21 AI090284-02/NIAID NIH HHS
  6. R21 AI077014/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0buddinginteractionsTsg101egressvirusproteinsinhibitorsgapcomplexestraffickingpatternsusedBiMCapproachabilityblockeVP40subsequentVLPsHIV-1GagVirus-hostplaykeyrolespromotingefficientmanyRNAvirusesincludingEbolaEBOV"e"MarburgMARV"m"Late-L-domainsconservedviralmatrixrecruitspecifichostNedd4facilitateprocessserveattractivetargetsdevelopmentbroad-spectrummajorstillexistsunderstandingmechanismfilovirusduedifficultydetectingvirus-hostmappingnaturalenvironmentcelladdressbimolecularcomplementationdetectlocalizefolloweVP40-Tsg101livemammaliancellsadditionalongVLPassaytestsmallmoleculeidentifiedsilicoscreeningPTAP-mediateddemonstratedpotentialbroadspectrumactivityleadcandidateinhibitordemonstratingPTAP-dependentbindingBimolecularComplementationVisualizeFilovirusVP40-HostComplexesLiveMammalianCells:TowardIdentificationBuddingInhibitors

Similar Articles

Cited By