A physiologically based pharmacokinetic model for capreomycin.

B Reisfeld, C P Metzler, M A Lyons, A N Mayeno, E J Brooks, M A Degroote
Author Information
  1. B Reisfeld: Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA. brad.reisfeld@colostate.edu

Abstract

The emergence of multidrug-resistant tuberculosis (MDR-TB) has led to a renewed interest in the use of second-line antibiotic agents. Unfortunately, there are currently dearths of information, data, and computational models that can be used to help design rational regimens for administration of these drugs. To help fill this knowledge gap, an exploratory physiologically based pharmacokinetic (PBPK) model, supported by targeted experimental data, was developed to predict the absorption, distribution, metabolism, and excretion (ADME) of the second-line agent capreomycin, a cyclic peptide antibiotic often grouped with the aminoglycoside antibiotics. To account for interindividual variability, Bayesian inference and Monte Carlo methods were used for model calibration, validation, and testing. Along with the predictive PBPK model, the first for an antituberculosis agent, this study provides estimates of various key pharmacokinetic parameter distributions and supports a hypothesized mechanism for capreomycin transport into the kidney.

References

  1. Ann Clin Microbiol Antimicrob. 2005 Apr 01;4:6 [PMID: 15804353]
  2. Nat Rev Nephrol. 2009 Apr;5(4):193-202 [PMID: 19322184]
  3. Toxicol Lett. 1995 Sep;79(1-3):87-98 [PMID: 7570677]
  4. Nat Rev Mol Cell Biol. 2002 Apr;3(4):256-66 [PMID: 11994745]
  5. Dis Chest. 1968 May;53(5):560-70 [PMID: 5658968]
  6. Int J Antimicrob Agents. 2003 Jul;22(1):81-3 [PMID: 12842334]
  7. Toxicology. 2010 Dec 30;278(3):256-67 [PMID: 20600548]
  8. Clin Pharmacokinet. 1984 Nov-Dec;9(6):511-44 [PMID: 6391781]
  9. Thorax. 1994 Feb;49(2):104-6 [PMID: 8128396]
  10. CPT Pharmacometrics Syst Pharmacol. 2013 Jul 10;2:e55 [PMID: 23842098]
  11. Regul Toxicol Pharmacol. 2008 Jun;51(1):66-86 [PMID: 18433959]
  12. J Pharmacol Exp Ther. 1986 Feb;236(2):470-5 [PMID: 3944768]
  13. Toxicol Ind Health. 1997 Jul-Aug;13(4):407-84 [PMID: 9249929]
  14. Antimicrob Agents Chemother (Bethesda). 1963;161:522-9 [PMID: 14274954]
  15. Regul Toxicol Pharmacol. 2003 Dec;38(3):345-67 [PMID: 14623485]
  16. J Antibiot B. 1964 Aug;17:190-2 [PMID: 14216395]
  17. Can Vet J. 1997 Oct;38(10):645-6 [PMID: 9332751]
  18. J Theor Biol. 2011 Aug 7;282(1):80-92 [PMID: 21605569]
  19. Ann N Y Acad Sci. 1999;895:317-37 [PMID: 10676425]
  20. Regul Toxicol Pharmacol. 2008 Feb;50(1):129-43 [PMID: 18077066]
  21. J Pharmacokinet Pharmacodyn. 2007 Jun;34(3):373-400 [PMID: 17431753]
  22. J Vet Pharmacol Ther. 2003 Feb;26(1):55-63 [PMID: 12603776]
  23. Risk Anal. 2007 Aug;27(4):947-59 [PMID: 17958503]
  24. Toxicol Sci. 2010 Jul;116(1):336-48 [PMID: 20400482]
  25. Toxicol Appl Pharmacol. 2009 Nov 15;241(1):36-60 [PMID: 19660485]
  26. Drug Metab Dispos. 2006 Jan;34(1):84-93 [PMID: 16221757]
  27. J Antimicrob Chemother. 2008 Feb;61(2):235-7 [PMID: 18065413]
  28. Environ Health Perspect. 2008 Aug;116(8):1040-6 [PMID: 18709138]
  29. Pharm Res. 1993 Jul;10(7):1093-5 [PMID: 8378254]
  30. J Am Soc Nephrol. 2002 Jun;13(6):1481-9 [PMID: 12039977]
  31. Clin Pharmacokinet. 2006;45(5):511-42 [PMID: 16640456]
  32. Pharm Res. 2008 Apr;25(4):805-11 [PMID: 17657592]
  33. Antimicrob Agents Chemother. 1994 Dec;38(12):2695-701 [PMID: 7535036]
  34. J Infect Dis. 1989 Feb;159(2):281-92 [PMID: 2644371]
  35. J Infect. 2007 Mar;54(3):277-84 [PMID: 16822547]
  36. Ann N Y Acad Sci. 1966 Apr 20;135(2):974-82 [PMID: 5220250]
  37. Pharmacotherapy. 2009 Dec;29(12):1468-81 [PMID: 19947806]
  38. J Biol Chem. 2002 Jan 4;277(1):618-22 [PMID: 11700326]
  39. Eur J Drug Metab Pharmacokinet. 1987 Jul-Sep;12(3):193-201 [PMID: 3436342]
  40. Arch Toxicol. 1996;70(6):347-55 [PMID: 8975633]
  41. Antimicrob Agents Chemother. 1999 May;43(5):1003-12 [PMID: 10223907]
  42. J Antimicrob Chemother. 1991 May;27 Suppl C:29-40 [PMID: 1830302]
  43. Drug Metab Pharmacokinet. 2004 Jun;19(3):159-70 [PMID: 15499183]
  44. Med Clin North Am. 1993 Nov;77(6):1253-62 [PMID: 8231410]

MeSH Term

Animals
Antitubercular Agents
Bayes Theorem
Biological Transport
Capreomycin
Computer Simulation
Female
Humans
Kidney
Mice
Mice, Inbred C57BL
Models, Biological
Monte Carlo Method
Tissue Distribution

Chemicals

Antitubercular Agents
Capreomycin

Word Cloud

Created with Highcharts 10.0.0modelpharmacokineticcapreomycinsecond-lineantibioticdatausedhelpphysiologicallybasedPBPKagentemergencemultidrug-resistanttuberculosisMDR-TBledrenewedinterestuseagentsUnfortunatelycurrentlydearthsinformationcomputationalmodelscandesignrationalregimensadministrationdrugsfillknowledgegapexploratorysupportedtargetedexperimentaldevelopedpredictabsorptiondistributionmetabolismexcretionADMEcyclicpeptideoftengroupedaminoglycosideantibioticsaccountinterindividualvariabilityBayesianinferenceMonteCarlomethodscalibrationvalidationtestingAlongpredictivefirstantituberculosisstudyprovidesestimatesvariouskeyparameterdistributionssupportshypothesizedmechanismtransportkidney

Similar Articles

Cited By