Individualized therapy of HHT driven by network analysis of metabolomic profiles.

Neema Jamshidi, Franklin J Miller, Jess Mandel, Timothy Evans, Michael D Kuo
Author Information
  1. Neema Jamshidi: Department of Radiological Sciences, University of California, Los Angeles, CA, USA.

Abstract

BACKGROUND: Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant disease with a varying range of phenotypes involving abnormal vasculature primarily manifested as arteriovenous malformations in various organs, including the nose, brain, liver, and lungs. The varied presentation and involvement of different organ systems makes the choice of potential treatment medications difficult.
RESULTS: A patient with a mixed-clinical presentation and presumed diagnosis of HHT, severe exertional dyspnea, and diffuse pulmonary shunting at the microscopic level presented for treatment. We sought to analyze her metabolomic plasma profile to assist with pharmacologic treatment selection. Fasting serum samples from 5 individuals (4 healthy and 1 with HHT) were metabolomically profiled. A global metabolic network reconstruction, Recon 1, was used to help guide the choice of medication via analysis of the differential metabolism between the patient and healthy controls using metabolomic data. Flux Balance Analysis highlighted changes in metabolic pathway activity, notably in nitric oxide synthase (NOS), which suggested a potential link between changes in vascular endothelial function and metabolism. This finding supported the use of an already approved medication, bevacizumab (Avastin). Following 2 months of treatment, the patient's metabolic profile shifted, becoming more similar to the control subject profiles, suggesting that the treatment was addressing at least part of the pathophysiological state.
CONCLUSIONS: In this 'individualized case study' of personalized medicine, we carry out untargeted metabolomic profiling of a patient and healthy controls. Rather than filtering the data down to a single value, these data are analyzed in the context of a network model of metabolism, in order to simulate the biochemical phenotypic differences between healthy and disease states; the results then guide the therapy. This presents one approach to achieving the goals of individualized medicine through Systems Biology and causal models analysis.

References

  1. Am J Med Genet. 2000 Mar 6;91(1):66-7 [PMID: 10751092]
  2. Nat Protoc. 2007;2(3):727-38 [PMID: 17406635]
  3. J Biosci Bioeng. 2008 Jan;105(1):1-11 [PMID: 18295713]
  4. BMC Syst Biol. 2010 Oct 19;4:140 [PMID: 20959003]
  5. Proc Natl Acad Sci U S A. 2005 May 31;102(22):7841-6 [PMID: 15908506]
  6. Methods Mol Biol. 2008;416:409-31 [PMID: 18392985]
  7. J Cardiovasc Pharmacol. 1996 Jun;27(6):838-44 [PMID: 8761851]
  8. Mol Syst Biol. 2010 Sep 7;6:401 [PMID: 20823844]
  9. FEBS Lett. 2006 May 22;580(12):2879-87 [PMID: 16631753]
  10. Nature. 2004 Feb 26;427(6977):839-43 [PMID: 14985762]
  11. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1777-82 [PMID: 17267599]
  12. Mol Biosyst. 2007 Sep;3(9):598-603 [PMID: 17700859]
  13. Mol Syst Biol. 2010 Oct 19;6:422 [PMID: 20959820]
  14. J Bacteriol. 2010 Oct;192(20):5534-48 [PMID: 20709898]
  15. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2685-9 [PMID: 15710883]
  16. BioDrugs. 2011 Jun 1;25(3):159-69 [PMID: 21627340]
  17. Mol Syst Biol. 2009;5:263 [PMID: 19401675]
  18. Curr Opin Microbiol. 2010 Jun;13(3):344-9 [PMID: 20430689]
  19. Am Heart J. 2001 Nov;142(5):872-80 [PMID: 11685177]
  20. BMC Bioinformatics. 2008 Jan 24;9:43 [PMID: 18218092]
  21. Nat Methods. 2009 Aug;6(8):589-92 [PMID: 19597503]
  22. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12663-8 [PMID: 17652176]
  23. Clin Cancer Res. 2006 Sep 1;12(17):5018-22 [PMID: 16951216]
  24. Haemophilia. 2008 Nov;14(6):1269-80 [PMID: 19141168]
  25. Biotechnol Prog. 2007 Mar-Apr;23(2):320-6 [PMID: 17373823]
  26. Epigenetics. 2009 Jan;4(1):43-6 [PMID: 19218833]
  27. BMC Syst Biol. 2009 May 16;3:52 [PMID: 19445715]
  28. Metab Eng. 2003 Oct;5(4):264-76 [PMID: 14642354]
  29. Nat Biotechnol. 2010 Mar;28(3):245-8 [PMID: 20212490]
  30. Mol Syst Biol. 2009;5:320 [PMID: 19888215]
  31. BMC Syst Biol. 2009 Apr 08;3:38 [PMID: 19356237]

MeSH Term

Antibodies, Monoclonal, Humanized
Bevacizumab
Case-Control Studies
Cluster Analysis
Female
Humans
Metabolic Networks and Pathways
Metabolome
Models, Biological
Precision Medicine
Systems Biology
Telangiectasia, Hereditary Hemorrhagic
Young Adult

Chemicals

Antibodies, Monoclonal, Humanized
Bevacizumab

Word Cloud

Created with Highcharts 10.0.0treatmentHHTmetabolomichealthypatientmetabolicnetworkanalysismetabolismdatadiseasepresentationchoicepotentialprofile1guidemedicationcontrolschangesprofilesmedicinetherapyBACKGROUND:HereditaryHemorrhagicTelangiectasiaautosomaldominantvaryingrangephenotypesinvolvingabnormalvasculatureprimarilymanifestedarteriovenousmalformationsvariousorgansincludingnosebrainliverlungsvariedinvolvementdifferentorgansystemsmakesmedicationsdifficultRESULTS:mixed-clinicalpresumeddiagnosissevereexertionaldyspneadiffusepulmonaryshuntingmicroscopiclevelpresentedsoughtanalyzeplasmaassistpharmacologicselectionFastingserumsamples5individuals4metabolomicallyprofiledglobalreconstructionReconusedhelpviadifferentialusingFluxBalanceAnalysishighlightedpathwayactivitynotablynitricoxidesynthaseNOSsuggestedlinkvascularendothelialfunctionfindingsupportedusealreadyapprovedbevacizumabAvastinFollowing2monthspatient'sshiftedbecomingsimilarcontrolsubjectsuggestingaddressingleastpartpathophysiologicalstateCONCLUSIONS:'individualizedcasestudy'personalizedcarryuntargetedprofilingRatherfilteringsinglevalueanalyzedcontextmodelordersimulatebiochemicalphenotypicdifferencesstatesresultspresentsoneapproachachievinggoalsindividualizedSystemsBiologycausalmodelsIndividualizeddriven

Similar Articles

Cited By