Laboratory evolution of copper tolerant yeast strains.

Giusy Manuela Adamo, Stefania Brocca, Simone Passolunghi, Benedetto Salvato, Marina Lotti
Author Information
  1. Giusy Manuela Adamo: Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.

Abstract

BACKGROUND: Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts.
RESULTS: We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts.
CONCLUSIONS: Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds.

References

  1. J Biol Chem. 1969 Nov 25;244(22):6049-55 [PMID: 5389100]
  2. Mol Pharmacol. 2001 Feb;59(2):367-74 [PMID: 11160874]
  3. Mol Cell Biol. 1999 Apr;19(4):2650-6 [PMID: 10082531]
  4. Biometals. 2003 Mar;16(1):185-97 [PMID: 12572678]
  5. Biochim Biophys Acta. 2008 Jul;1783(7):1354-68 [PMID: 18298957]
  6. Microb Cell Fact. 2005 May 06;4(1):13 [PMID: 15877814]
  7. Anal Biochem. 1995 Mar 20;226(1):80-4 [PMID: 7785783]
  8. Adv Biochem Eng Biotechnol. 2004;89:197-223 [PMID: 15217160]
  9. Neurobiol Dis. 1999 Aug;6(4):221-30 [PMID: 10448050]
  10. J Biotechnol. 2009 Aug 20;143(2):130-8 [PMID: 19577596]
  11. Methods Enzymol. 1990;186:1-85 [PMID: 2172697]
  12. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  13. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5342-6 [PMID: 6291039]
  14. Biometals. 1994 Jul;7(3):221-6 [PMID: 8043987]
  15. Microb Cell Fact. 2010 Feb 12;9:9 [PMID: 20152017]
  16. Trends Microbiol. 1999 Dec;7(12):500-5 [PMID: 10603486]
  17. Nat Cell Biol. 2005 Jul;7(7):665-74 [PMID: 15951807]
  18. Biotechnol Bioeng. 1996 Jan 20;49(2):185-96 [PMID: 18623568]
  19. Yeast. 2001 Apr;18(6):511-21 [PMID: 11284007]
  20. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  21. J Proteome Res. 2008 Nov;7(11):4955-61 [PMID: 18817430]
  22. Microb Cell Fact. 2011 Mar 25;10:18 [PMID: 21435272]
  23. Aquat Toxicol. 2010 Jan 31;96(2):85-9 [PMID: 19896729]
  24. Appl Environ Microbiol. 2008 Mar;74(6):1748-56 [PMID: 18245248]
  25. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):197-203 [PMID: 1478456]
  26. J Gen Microbiol. 1985 Dec;131(12):3185-91 [PMID: 3913740]
  27. J Biosci Bioeng. 2007 Apr;103(4):331-7 [PMID: 17502274]
  28. Antonie Van Leeuwenhoek. 2011 May;99(4):825-35 [PMID: 21279440]
  29. Prog Mol Subcell Biol. 2001;27:57-89 [PMID: 11575161]
  30. Adv Biochem Eng Biotechnol. 2007;108:179-204 [PMID: 17846724]
  31. Mol Cell Biol. 1998 May;18(5):2514-23 [PMID: 9599102]
  32. Biochem J. 1984 Apr 1;219(1):1-14 [PMID: 6326753]
  33. J Biol Chem. 2000 Feb 25;275(8):5723-32 [PMID: 10681558]
  34. Arch Biochem Biophys. 1995 May 10;319(1):1-9 [PMID: 7771771]
  35. Mol Cell. 2008 Apr 11;30(1):108-13 [PMID: 18406331]
  36. Adv Biochem Eng Biotechnol. 2001;73:129-69 [PMID: 11816810]
  37. FEMS Yeast Res. 2005 Apr;5(6-7):569-78 [PMID: 15780656]
  38. Yeast. 1998 Dec;14(16):1511-27 [PMID: 9885153]
  39. Biochem J. 2008 May 15;412(1):73-80 [PMID: 18271751]
  40. Appl Environ Microbiol. 1996 Nov;62(11):3960-6 [PMID: 8899983]
  41. FEMS Yeast Res. 2007 Sep;7(6):819-33 [PMID: 17484738]
  42. J Neurochem. 1996 Mar;66(3):928-35 [PMID: 8769851]
  43. Biochemistry (Mosc). 2008 Nov;73(11):1224-7 [PMID: 19120026]
  44. Yeast. 1998 Jan 30;14(2):147-60 [PMID: 9483803]
  45. Mol Microbiol. 2002 Feb;43(4):993-1003 [PMID: 11929546]

MeSH Term

Biological Evolution
Biomass
Candida
Catalase
Copper
Oxidative Stress
Recombinant Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Superoxide Dismutase

Chemicals

Recombinant Proteins
Saccharomyces cerevisiae Proteins
Copper
Catalase
Superoxide Dismutase

Word Cloud

Created with Highcharts 10.0.0copperyeastsstrainsCucellsevolutiondifferentrobustnessmolecularphysiologicalCandidaSaccharomyceshighchangestowardsintracellularcontributestudyconfertolerancecharacterizednaturalhumiliscerevisiaeobservedg·L-1CuSO4mediumoxidativestresslevelshyper-resistantableproliferateenzymesBACKGROUND:Yeastendowedand/orenrichedmightfindapplicationbiotechnologyprocessesamongothersproductionfunctionalfoodsMoreovercanhumandiseasesrelatedimpairmentsmetabolisminvestigatedfactorsbaker'sRESULTS:effectselicitedexposureculturebrothwhereasgrowthinhibitedalreadylowconcentrationCnaturallyrobusttolerated1resistantstrainaccumulated7mgpergrambiomassescapedseverethanksconstitutivesuperoxidedismutasecatalase"evolved"obtainSparalleledincreaseantioxidativeactivitiesdecreasedevolvedalsodetailprofilebindingproteinsappearedmodifiedwaytwoCONCLUSIONS:Following25accumulateamountscomparisondifferingallowedhighlightingdeterminantsacquiredmechanismsmetaltolerance:controluptakeinvolvedresponsecopper-bindingproteomeHoweverelicitsreactionsbackgroundsLaboratorytolerantyeast

Similar Articles

Cited By