Robust signal processing in living cells.

Ralf Steuer, Steffen Waldherr, Victor Sourjik, Markus Kollmann
Author Information
  1. Ralf Steuer: Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany. ralf.steuer@hu-berlin.de

Abstract

Cellular signaling networks have evolved an astonishing ability to function reliably and with high fidelity in uncertain environments. A crucial prerequisite for the high precision exhibited by many signaling circuits is their ability to keep the concentrations of active signaling compounds within tightly defined bounds, despite strong stochastic fluctuations in copy numbers and other detrimental influences. Based on a simple mathematical formalism, we identify topological organizing principles that facilitate such robust control of intracellular concentrations in the face of multifarious perturbations. Our framework allows us to judge whether a multiple-input-multiple-output reaction network is robust against large perturbations of network parameters and enables the predictive design of perfectly robust synthetic network architectures. Utilizing the Escherichia coli chemotaxis pathway as a hallmark example, we provide experimental evidence that our framework indeed allows us to unravel the topological organization of robust signaling. We demonstrate that the specific organization of the pathway allows the system to maintain global concentration robustness of the diffusible response regulator CheY with respect to several dominant perturbations. Our framework provides a counterpoint to the hypothesis that cellular function relies on an extensive machinery to fine-tune or control intracellular parameters. Rather, we suggest that for a large class of perturbations, there exists an appropriate topology that renders the network output invariant to the respective perturbations.

References

  1. Science. 2008 Jul 4;321(5885):126-9 [PMID: 18599789]
  2. Mol Syst Biol. 2007;3:137 [PMID: 17882156]
  3. J Biotechnol. 2007 Apr 30;129(2):173-80 [PMID: 17339063]
  4. Mol Syst Biol. 2006;2:43 [PMID: 16924264]
  5. Science. 2005 Oct 21;310(5747):496-8 [PMID: 16239477]
  6. Biophys J. 2009 Sep 2;97(5):1244-53 [PMID: 19720012]
  7. Science. 2008 Oct 17;322(5900):456-60 [PMID: 18927397]
  8. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):123-7 [PMID: 11742065]
  9. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5 [PMID: 18077424]
  10. Mol Syst Biol. 2010 Jun 22;6:382 [PMID: 20571531]
  11. J Bacteriol. 2011 Aug;193(15):3894-903 [PMID: 21642453]
  12. Nature. 2005 Nov 24;438(7067):504-7 [PMID: 16306993]
  13. PLoS Biol. 2009 Jun 16;7(6):e1000137 [PMID: 19547746]
  14. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):691-6 [PMID: 12522261]
  15. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4649-53 [PMID: 10781070]
  16. PLoS Biol. 2009 Aug;7(8):e1000171 [PMID: 19688030]
  17. Cell. 2008 Jun 13;133(6):1043-54 [PMID: 18555780]
  18. Science. 2010 Sep 24;329(5999):1656-60 [PMID: 20929850]
  19. PLoS Comput Biol. 2009 Mar;5(3):e1000297 [PMID: 19266029]
  20. Cell. 2004 Sep 17;118(6):675-85 [PMID: 15369668]
  21. Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1786-91 [PMID: 16446460]
  22. Mol Microbiol. 2008 Jun;68(5):1228-36 [PMID: 18476921]
  23. Nature. 2008 Dec 11;456(7223):755-61 [PMID: 19079053]
  24. Science. 2010 Mar 12;327(5971):1389-91 [PMID: 20223989]
  25. Curr Opin Microbiol. 2004 Apr;7(2):198-202 [PMID: 15063859]
  26. Cell. 2009 Jul 10;138(1):160-71 [PMID: 19596242]
  27. Biotechnol Bioeng. 1998 Jul 20;59(2):239-47 [PMID: 10099334]

MeSH Term

Bacterial Proteins
Cell Communication
Chemotaxis
Escherichia coli
Escherichia coli Proteins
Membrane Proteins
Methyl-Accepting Chemotaxis Proteins
Models, Biological
Signal Transduction
Systems Biology

Chemicals

Bacterial Proteins
Escherichia coli Proteins
Membrane Proteins
Methyl-Accepting Chemotaxis Proteins
cheY protein, E coli

Word Cloud

Created with Highcharts 10.0.0perturbationssignalingrobustnetworkframeworkallowsabilityfunctionhighconcentrationstopologicalcontrolintracellularuslargeparameterspathwayorganizationCellularnetworksevolvedastonishingreliablyfidelityuncertainenvironmentscrucialprerequisiteprecisionexhibitedmanycircuitskeepactivecompoundswithintightlydefinedboundsdespitestrongstochasticfluctuationscopynumbersdetrimentalinfluencesBasedsimplemathematicalformalismidentifyorganizingprinciplesfacilitatefacemultifariousjudgewhethermultiple-input-multiple-outputreactionenablespredictivedesignperfectlysyntheticarchitecturesUtilizingEscherichiacolichemotaxishallmarkexampleprovideexperimentalevidenceindeedunraveldemonstratespecificsystemmaintainglobalconcentrationrobustnessdiffusibleresponseregulatorCheYrespectseveraldominantprovidescounterpointhypothesiscellularreliesextensivemachineryfine-tuneRathersuggestclassexistsappropriatetopologyrendersoutputinvariantrespectiveRobustsignalprocessinglivingcells

Similar Articles

Cited By