Deep-sequencing analysis of the mouse transcriptome response to infection with Brucella melitensis strains of differing virulence.

Fangkun Wang, Sen Hu, Wenxing Liu, Zujian Qiao, Yuzhe Gao, Zhigao Bu
Author Information
  1. Fangkun Wang: State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China.

Abstract

Brucella melitensis is an important zoonotic pathogen that causes brucellosis, a disease that affects sheep, cattle and occasionally humans. B. melitensis strain M5-90, a live attenuated vaccine cultured from B. melitensis strain M28, has been used as an effective tool in the control of brucellosis in goats and sheep in China. However, the molecular changes leading to attenuated virulence and pathogenicity in B. melitensis remain poorly understood. In this study we employed the Illumina Genome Analyzer platform to perform genome-wide digital gene expression (DGE) analysis of mouse peritoneal macrophage responses to B. melitensis infection. Many parallel changes in gene expression profiles were observed in M28- and M5-90-infected macrophages, suggesting that they employ similar survival strategies, notably the induction of anti-inflammatory and antiapoptotic factors. Moreover, 1019 differentially expressed macrophage transcripts were identified 4 h after infection with the different B. melitensis strains, and these differential transcripts notably identified genes involved in the lysosome and mitogen-activated protein kinase (MAPK) pathways. Further analysis employed gene ontology (GO) analysis: high-enrichment GOs identified endocytosis, inflammatory, apoptosis, and transport pathways. Path-Net and Signal-Net analysis highlighted the MAPK pathway as the key regulatory pathway. Moreover, the key differentially expressed genes of the significant pathways were apoptosis-related. These findings demonstrate previously unrecognized changes in gene transcription that are associated with B. melitensis infection of macrophages, and the central signaling pathways identified here merit further investigation. Our data provide new insights into the molecular attenuation mechanism of strain M5-90 and will facilitate the generation of new attenuated vaccine strains with enhanced efficacy.

References

  1. J Pathol. 2010 Apr;220(5):542-50 [PMID: 20087880]
  2. Vet Microbiol. 2008 May 25;129(1-2):1-14 [PMID: 18226477]
  3. J Neurochem. 2003 Jul;86(1):25-32 [PMID: 12807421]
  4. J Clin Invest. 2000 Nov;106(9):1127-37 [PMID: 11067865]
  5. Emerg Infect Dis. 1997 Apr-Jun;3(2):83-94 [PMID: 9204289]
  6. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12123-8 [PMID: 14517352]
  7. Vet Microbiol. 2009 May 28;137(1-2):74-82 [PMID: 19135812]
  8. Vet Microbiol. 2002 Dec 20;90(1-4):281-97 [PMID: 12414149]
  9. Future Oncol. 2009 Feb;5(1):1-3 [PMID: 19243289]
  10. Infect Immun. 1995 Oct;63(10):3945-52 [PMID: 7558303]
  11. EMBO J. 1998 Aug 3;17(15):4426-41 [PMID: 9687510]
  12. Annu Rev Immunol. 1997;15:323-50 [PMID: 9143691]
  13. Cancer Res. 2009 Apr 15;69(8):3267-71 [PMID: 19351823]
  14. Am J Vet Res. 2001 Sep;62(9):1461-6 [PMID: 11560278]
  15. FASEB J. 2008 Apr;22(4):954-65 [PMID: 18039929]
  16. Microb Pathog. 2006 Oct-Nov;41(4-5):157-67 [PMID: 16950595]
  17. Microbes Infect. 2008 Oct;10(12-13):1346-54 [PMID: 18761420]
  18. J Biomol Tech. 2003 Dec;14(4):298-307 [PMID: 14715888]
  19. Genome Res. 2002 Jan;12(1):37-46 [PMID: 11779829]
  20. Infect Immun. 2011 Jun;79(6):2460-9 [PMID: 21464087]
  21. BMC Bioinformatics. 2006 Jan 19;7:30 [PMID: 16423281]
  22. Curr Atheroscler Rep. 2007 Sep;9(3):222-9 [PMID: 18241617]
  23. J Immunol. 2004 Oct 1;173(7):4635-42 [PMID: 15383598]
  24. Infect Immun. 2000 Jan;68(1):342-51 [PMID: 10603407]
  25. Infect Immun. 2006 Sep;74(9):5035-46 [PMID: 16926395]
  26. Actas Urol Esp. 2004 Apr;28(4):269-85 [PMID: 15248398]
  27. Adv Urol. 2009;:723831 [PMID: 19365586]
  28. Res Vet Sci. 2002 Jun;72(3):235-9 [PMID: 12076120]
  29. Lab Invest. 2001 Feb;81(2):149-58 [PMID: 11232636]
  30. J Biol Chem. 2005 Apr 1;280(13):12888-95 [PMID: 15684432]
  31. Cell Death Differ. 2001 May;8(5):477-85 [PMID: 11423908]
  32. Infect Immun. 2004 Jan;72(1):440-50 [PMID: 14688125]
  33. Cell Biochem Biophys. 1999;30(1):71-88 [PMID: 10099823]
  34. Nature. 2008 Jun 26;453(7199):1239-43 [PMID: 18488015]
  35. Genome Res. 2009 Oct;19(10):1825-35 [PMID: 19541910]
  36. Pathobiology. 1999;67(5-6):241-4 [PMID: 10725793]
  37. Bioinformatics. 2004 Nov 22;20(17):3246-8 [PMID: 15180930]
  38. Eur J Immunol. 2002 Jan;32(1):1-9 [PMID: 11753998]
  39. Bioinformatics. 2007 Jun 15;23(12):1537-44 [PMID: 17483504]
  40. Infect Immun. 2003 Mar;71(3):1125-33 [PMID: 12595423]
  41. Gene. 2003 Mar 13;306:1-12 [PMID: 12657462]
  42. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17202-7 [PMID: 17079494]
  43. Bioinformatics. 2009 Jun 1;25(11):1470-1 [PMID: 19307239]
  44. J Exp Med. 2003 Aug 18;198(4):545-56 [PMID: 12925673]
  45. J Cell Biol. 2001 May 28;153(5):999-1010 [PMID: 11381085]
  46. J Biol Chem. 2002 Nov 8;277(45):42867-74 [PMID: 12221075]
  47. Cell. 2007 Jun 15;129(6):1065-79 [PMID: 17574021]
  48. EMBO J. 2008 Oct 22;27(20):2639-47 [PMID: 18818691]
  49. Nucleic Acids Res. 2008 Dec;36(21):e141 [PMID: 18927111]
  50. J Lipid Res. 1997 Nov;38(11):2207-15 [PMID: 9392418]
  51. Vet Microbiol. 2002 Dec 20;90(1-4):383-94 [PMID: 12414158]
  52. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  53. Vet Microbiol. 2002 Sep 2;88(3):205-21 [PMID: 12151196]
  54. Exp Biol Med (Maywood). 2009 Dec;234(12):1450-67 [PMID: 19934366]
  55. Nat Rev Mol Cell Biol. 2002 Feb;3(2):94-103 [PMID: 11836511]
  56. Genome Res. 1997 Oct;7(10):986-95 [PMID: 9331369]
  57. J Infect Dis. 2003 Jun 15;187 Suppl 2:S340-5 [PMID: 12792849]
  58. J Physiol Paris. 2000 May-Aug;94(3-4):205-10 [PMID: 11087998]
  59. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 [PMID: 9843981]
  60. Infect Immun. 2003 Mar;71(3):1481-90 [PMID: 12595466]
  61. Genomics. 2010 Dec;96(6):369-76 [PMID: 20828606]
  62. Chest. 2000 Apr;117(4):1162-72 [PMID: 10767254]
  63. Microbes Infect. 2008 Jul;10(9):1005-9 [PMID: 18664388]
  64. Nat Methods. 2005 May;2(5):345-50 [PMID: 15846361]
  65. Infect Immun. 2004 Jan;72(1):176-86 [PMID: 14688095]
  66. Infect Immun. 1992 Jul;60(7):3011-4 [PMID: 1612769]
  67. FEMS Microbiol Lett. 2008 Nov;288(2):211-5 [PMID: 18811654]
  68. Infect Immun. 2003 Apr;71(4):2110-9 [PMID: 12654833]
  69. Infect Immun. 2007 Aug;75(8):4050-61 [PMID: 17562767]
  70. Clin Immunol. 2005 Mar;114(3):227-38 [PMID: 15721833]
  71. PLoS One. 2009 Aug 28;4(8):e6830 [PMID: 19714247]
  72. PLoS One. 2010 Jun 29;5(6):e11377 [PMID: 20614006]
  73. Mol Immunol. 2009 Sep;46(15):2918-30 [PMID: 19631987]
  74. Annu Rev Pharmacol Toxicol. 2002;42:469-99 [PMID: 11807180]
  75. Genome Biol. 2008;9(9):234 [PMID: 18828881]
  76. Microbiol Mol Biol Rev. 2004 Jun;68(2):320-44 [PMID: 15187187]
  77. Histol Histopathol. 2009 Feb;24(2):265-71 [PMID: 19085841]
  78. Infect Immun. 2008 Jan;76(1):250-62 [PMID: 17984211]
  79. Expert Rev Mol Med. 2007 Dec 19;9(35):1-10 [PMID: 18088444]
  80. Infect Immun. 1999 Aug;67(8):4041-7 [PMID: 10417172]
  81. Nat Cell Biol. 2008 Oct;10(10):1199-207 [PMID: 18758450]
  82. Microbes Infect. 2009 Nov;11(13):1063-70 [PMID: 19733679]
  83. Genomics. 2008 Nov;92(5):255-64 [PMID: 18703132]

MeSH Term

Animals
Apoptosis
Brucella melitensis
Brucellosis
Electrophoresis, Polyacrylamide Gel
Endocytosis
Macrophages
Mice
Polymerase Chain Reaction
Proteomics
Sequence Analysis, RNA
Transcriptome

Word Cloud

Created with Highcharts 10.0.0melitensisBgeneanalysisinfectionidentifiedpathwaysstrainattenuatedchangesstrainsBrucellabrucellosissheepM5-90vaccinemolecularvirulenceemployedexpressionmousemacrophagemacrophagesnotablyMoreoverdifferentiallyexpressedtranscriptsgenesMAPKpathwaykeynewimportantzoonoticpathogencausesdiseaseaffectscattleoccasionallyhumansliveculturedM28usedeffectivetoolcontrolgoatsChinaHoweverleadingpathogenicityremainpoorlyunderstoodstudyIlluminaGenomeAnalyzerplatformperformgenome-widedigitalDGEperitonealresponsesManyparallelprofilesobservedM28-M5-90-infectedsuggestingemploysimilarsurvivalstrategiesinductionanti-inflammatoryantiapoptoticfactors10194hdifferentdifferentialinvolvedlysosomemitogen-activatedproteinkinaseontologyGOanalysis:high-enrichmentGOsendocytosisinflammatoryapoptosistransportPath-NetSignal-Nethighlightedregulatorysignificantapoptosis-relatedfindingsdemonstratepreviouslyunrecognizedtranscriptionassociatedcentralsignalingmeritinvestigationdataprovideinsightsattenuationmechanismwillfacilitategenerationenhancedefficacyDeep-sequencingtranscriptomeresponsediffering

Similar Articles

Cited By