Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study.

Vincent van de Ven, Christianne Jacobs, Alexander T Sack
Author Information
  1. Vincent van de Ven: Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands. v.vandeven@maastrichtuniversity.nl

Abstract

The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.

References

  1. Nat Rev Neurosci. 2005 Feb;6(2):97-107 [PMID: 15654324]
  2. Neuroscience. 2006 Apr 28;139(1):317-25 [PMID: 16324799]
  3. Psychol Sci. 2004 Feb;15(2):106-11 [PMID: 14738517]
  4. Cereb Cortex. 2000 May;10(5):529-34 [PMID: 10847602]
  5. Psychon Bull Rev. 2005 Dec;12(6):1127-33 [PMID: 16615339]
  6. J Exp Psychol Hum Percept Perform. 1996 Feb;22(1):202-12 [PMID: 8742262]
  7. Electroencephalogr Clin Neurophysiol Suppl. 1991;43:121-34 [PMID: 1773752]
  8. Exp Brain Res. 2005 Jan;160(1):118-28 [PMID: 15368086]
  9. Proc Biol Sci. 1997 Jul 22;264(1384):1031-6 [PMID: 9263470]
  10. Neuroimage. 2010 May 1;50(4):1683-9 [PMID: 20079448]
  11. Psychol Res. 1999;62(2-3):81-92 [PMID: 10472196]
  12. Nature. 1993 Sep 16;365(6443):250-2 [PMID: 8371779]
  13. Science. 2001 Apr 20;292(5516):510-2 [PMID: 11313497]
  14. Exp Brain Res. 2005 Jan;160(1):129-40 [PMID: 15368087]
  15. Nature. 1988 Jan 7;331(6151):68-70 [PMID: 3340148]
  16. Electroencephalogr Clin Neurophysiol. 1989 Nov-Dec;74(6):458-62 [PMID: 2480226]
  17. Eur J Neurosci. 2009 Oct;30(7):1393-400 [PMID: 19788574]
  18. Curr Opin Neurobiol. 2000 Apr;10(2):232-7 [PMID: 10753803]
  19. J Neurosci. 1996 Aug 15;16(16):5154-67 [PMID: 8756444]
  20. Neuron. 2010 Jan 28;65(2):280-90 [PMID: 20152133]
  21. Neuroimage. 2009 Jan 1;44(1):284-93 [PMID: 18721890]
  22. Science. 2001 Jul 6;293(5527):120-4 [PMID: 11441187]
  23. Nature. 1997 Nov 20;390(6657):279-81 [PMID: 9384378]
  24. Cereb Cortex. 2002 Aug;12(8):866-76 [PMID: 12122035]
  25. Behav Brain Sci. 2001 Feb;24(1):87-114; discussion 114-85 [PMID: 11515286]
  26. Clin Neurophysiol. 2009 Dec;120(12):2008-2039 [PMID: 19833552]
  27. J Neurosci. 1982 Mar;2(3):361-75 [PMID: 7062115]
  28. Nature. 2004 Apr 15;428(6984):751-4 [PMID: 15085133]
  29. Eur J Neurosci. 2007 Mar;25(6):1874-81 [PMID: 17408427]
  30. Cereb Cortex. 2010 Feb;20(2):328-38 [PMID: 19465739]
  31. Exp Brain Res. 1991;87(2):421-32 [PMID: 1769392]
  32. Cereb Cortex. 2002 Jun;12(6):663-9 [PMID: 12003865]
  33. Nature. 1997 Apr 10;386(6625):608-11 [PMID: 9121584]
  34. Trends Neurosci. 2000 Nov;23(11):571-9 [PMID: 11074267]
  35. Psychol Res. 2007 Nov;71(6):659-66 [PMID: 16642347]
  36. J Exp Psychol Gen. 1988 Mar;117(1):34-50 [PMID: 2966230]
  37. Neuron. 1995 Mar;14(3):477-85 [PMID: 7695894]
  38. Vision Res. 2002 Jun;42(14):1759-69 [PMID: 12127108]
  39. J Exp Psychol Hum Percept Perform. 1998 Oct;24(5):1454-66 [PMID: 9778831]
  40. J Neurosci. 2012 Feb 8;32(6):1981-8 [PMID: 22323712]
  41. J Cogn Neurosci. 2008 Apr;20(4):734-40 [PMID: 18052790]
  42. Neuroimage. 2002 Oct;17(2):573-82 [PMID: 12377135]
  43. Behav Res Methods Instrum Comput. 1999 Feb;31(1):137-49 [PMID: 10495845]
  44. Cereb Cortex. 2008 Sep;18(9):2010-8 [PMID: 18093905]
  45. Neuroimage. 2003 Nov;20(3):1518-30 [PMID: 14642464]
  46. J Exp Psychol Hum Percept Perform. 1994 Apr;20(2):357-71 [PMID: 8189198]
  47. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16 [PMID: 9474057]
  48. Cogn Psychol. 1998 Jul;36(2):138-202 [PMID: 9721199]
  49. J Physiol. 1995 Mar 15;483 ( Pt 3):797-810 [PMID: 7776259]
  50. Trends Cogn Sci. 2000 Sep;4(9):345-352 [PMID: 10962616]
  51. J Cogn Neurosci. 2010 Mar;22(3):496-512 [PMID: 19301998]
  52. J Cogn Neurosci. 2009 Jun;21(6):1081-91 [PMID: 18702589]
  53. Exp Brain Res. 2000 Jul;133(1):3-11 [PMID: 10933205]
  54. Percept Psychophys. 2000 Nov;62(8):1572-95 [PMID: 11140180]
  55. J Exp Psychol Hum Percept Perform. 1995 Feb;21(1):109-27 [PMID: 7707027]
  56. Nature. 2009 Apr 2;458(7238):632-5 [PMID: 19225460]
  57. J Exp Psychol Hum Percept Perform. 2006 Dec;32(6):1436-51 [PMID: 17154783]
  58. Nat Neurosci. 2005 Feb;8(2):143-4 [PMID: 15643428]
  59. Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17558-63 [PMID: 19805061]
  60. Exp Brain Res. 1998 Jan;118(1):19-26 [PMID: 9547074]
  61. J Cogn Neurosci. 2009 Feb;21(2):207-21 [PMID: 18823235]
  62. Annu Rev Psychol. 2008;59:193-224 [PMID: 17854286]

MeSH Term

Adult
Female
Humans
Learning
Male
Memory, Short-Term
Transcranial Magnetic Stimulation
Visual Cortex
Visual Fields
Visual Perception
Young Adult

Word Cloud

Created with Highcharts 10.0.0memoryvisualTMSretentionshort-termcortexfindingsearlypulseshighinformationsensorysuggestconsolidationtopographictranscranialmagneticstimulationdelivered200mslowloaddecreasedtrialsneuralcorrelatesconsideredseparateencodingHoweverrecentareasmayplayrolealsoinvestigatedfunctionalrelevancespatialspecificitytemporalcharacteristicshumancapacity-limitedusingTopographicallyspecificlateralizedoccipital100400phasemodifiedchangedetectiontaskloadsfoundperformancefieldcontralateralipsilateralsideintervalbehavioralversionexperimentdistractorstimulusmaskreplacedcorroboratedretinotopiccontributesstagesTMS-inducedinterferencestrengthamplituderepresentationstronglyaffectedTopographiccontributionconsolidation:study

Similar Articles

Cited By (31)