Cellular adaptation contributes to calorie restriction-induced preservation of skeletal muscle in aged rhesus monkeys.

Susan H McKiernan, Ricki J Colman, Erik Aiken, Trent D Evans, T Mark Beasley, Judd M Aiken, Richard Weindruch, Rozalyn M Anderson
Author Information
  1. Susan H McKiernan: Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, United States. shmckier@wisc.edu

Abstract

We have previously shown that a 30% reduced calorie intake diet delayed the onset of muscle mass loss in adult monkeys between ~16 and ~22 years of age and prevented multiple cellular phenotypes of aging. In the present study we show the impact of long term (~17 years) calorie restriction (CR) on muscle aging in very old monkeys (27-33 yrs) compared to age-matched Control monkeys fed ad libitum, and describe these data in the context of the whole longitudinal study. Muscle mass was preserved in very old calorie restricted (CR) monkeys compared to age-matched Controls. Immunohistochemical analysis revealed an age-associated increase in the proportion of Type I fibers in the VL from Control animals that was prevented with CR. The cross sectional area (CSA) of Type II fibers was reduced in old CR animals compared to earlier time points (16-22 years of age); however, the total loss in CSA was only 15% in CR animals compared to 36% in old Controls at ~27 years of age. Atrophy was not detected in Type I fibers from either group. Notably, Type I fiber CSA was ~1.6 fold greater in VL from CR animals compared to Control animals at ~27 years of age. The frequency of VL muscle fibers with defects in mitochondrial electron transport system enzymes (ETS(ab)), the absence of cytochrome c oxidase and hyper-reactive succinate dehydrogenase, were identical between Control and CR. We describe changes in ETS(ab) fiber CSA and determined that CR fibers respond differently to the challenge of mitochondrial deficiency. Fiber counts of intact rectus femoris muscles revealed that muscle fiber density was preserved in old CR animals. We suggest that muscle fibers from CR animals are better poised to endure and adapt to changes in muscle mass than those of Control animals.

References

  1. Science. 2009 Jul 10;325(5937):201-4 [PMID: 19590001]
  2. J Gerontol. 1993 Jan;48(1):B17-26 [PMID: 8418134]
  3. Can J Appl Physiol. 2001 Feb;26(1):78-89 [PMID: 11291626]
  4. FASEB J. 2004 Mar;18(3):580-1 [PMID: 14734642]
  5. J Appl Physiol (1985). 1995 Jun;78(6):2033-8 [PMID: 7665396]
  6. Ann N Y Acad Sci. 2002 Apr;959:412-23 [PMID: 11976214]
  7. J Gerontol A Biol Sci Med Sci. 1995 Nov;50(6):B399-406 [PMID: 7583797]
  8. Free Radic Biol Med. 1998 Nov 15;25(8):964-72 [PMID: 9840742]
  9. J Gerontol A Biol Sci Med Sci. 2007 Mar;62(3):235-45 [PMID: 17389720]
  10. J Gerontol A Biol Sci Med Sci. 2008 Sep;63(9):921-7 [PMID: 18840796]
  11. J Gerontol A Biol Sci Med Sci. 2008 Jun;63(6):556-9 [PMID: 18559628]
  12. Exp Gerontol. 2009 Mar;44(3):170-6 [PMID: 18983905]
  13. Science. 1982 Mar 12;215(4538):1415-8 [PMID: 7063854]
  14. Am J Physiol Endocrinol Metab. 2010 Aug;299(2):E145-61 [PMID: 20371735]
  15. Annu Rev Biochem. 2006;75:19-37 [PMID: 16756483]
  16. J Nutr. 1997 May;127(5 Suppl):990S-991S [PMID: 9164280]
  17. J Neurol Sci. 1988 Apr;84(2-3):275-94 [PMID: 3379447]
  18. Exp Gerontol. 2005 Jul;40(7):573-81 [PMID: 15985353]
  19. Nutrition. 1989 May-Jun;5(3):155-71; discussion 172 [PMID: 2520283]
  20. J Gerontol A Biol Sci Med Sci. 2000 Dec;55(12):M716-24 [PMID: 11129393]
  21. Am J Physiol Regul Integr Comp Physiol. 2009 Nov;297(5):R1452-9 [PMID: 19692660]
  22. J Lab Clin Med. 2001 Apr;137(4):231-43 [PMID: 11283518]
  23. Aging Cell. 2004 Oct;3(5):319-26 [PMID: 15379855]
  24. Age Ageing. 2010 Jul;39(4):412-23 [PMID: 20392703]
  25. Nucleic Acids Res. 2001 Nov 1;29(21):4502-8 [PMID: 11691938]
  26. Exp Gerontol. 2011 Jan;46(1):23-9 [PMID: 20883771]
  27. Mutat Res. 2000 Jul 20;452(1):123-38 [PMID: 10894897]
  28. Aging (Milano). 1998 Apr;10(2):83-92 [PMID: 9666188]
  29. Br J Math Stat Psychol. 2004 May;57(Pt 1):173-81 [PMID: 15171807]
  30. Am J Hum Genet. 2006 Sep;79(3):469-80 [PMID: 16909385]
  31. Exp Gerontol. 2000 Dec;35(9-10):1131-49 [PMID: 11113597]
  32. FASEB J. 2001 Feb;15(2):322-32 [PMID: 11156948]
  33. J Cell Biol. 1968 Jul;38(1):1-14 [PMID: 4300067]

Grants

  1. RR020141-01/NCRR NIH HHS
  2. P01 AG011915-15/NIA NIH HHS
  3. R01 AG037000/NIA NIH HHS
  4. R01 AG040178/NIA NIH HHS
  5. P01 AG011915/NIA NIH HHS
  6. P51 OD011106/NIH HHS
  7. P01 AG-11915/NIA NIH HHS
  8. C06 RR020141/NCRR NIH HHS
  9. C06 RR015459/NCRR NIH HHS
  10. P51 RR000167/NCRR NIH HHS
  11. RR15459-01/NCRR NIH HHS

MeSH Term

Adaptation, Physiological
Aging
Animal Nutritional Physiological Phenomena
Animals
Body Composition
Body Weight
Caloric Restriction
Electron Transport
Fibrosis
Macaca mulatta
Mitochondria, Muscle
Muscle Fibers, Fast-Twitch
Muscle Fibers, Slow-Twitch
Muscle, Skeletal
Sarcopenia

Word Cloud

Created with Highcharts 10.0.0CRanimalsmusclefibersmonkeysyearsoldcomparedControlcalorieageTypeCSAmassVLfiberreducedlosspreventedagingstudyage-matcheddescribepreservedControlsrevealed~27mitochondrialETSabchangespreviouslyshown30%intakedietdelayedonsetadult~16~22multiplecellularphenotypespresentshowimpactlongterm~17restriction27-33yrsfedadlibitumdatacontextwholelongitudinalMusclerestrictedImmunohistochemicalanalysisage-associatedincreaseproportioncrosssectionalareaIIearliertimepoints16-22howevertotal15%36%AtrophydetectedeithergroupNotably~16foldgreaterfrequencydefectselectrontransportsystemenzymesabsencecytochromecoxidasehyper-reactivesuccinatedehydrogenaseidenticaldeterminedresponddifferentlychallengedeficiencyFibercountsintactrectusfemorismusclesdensitysuggestbetterpoisedendureadaptCellularadaptationcontributesrestriction-inducedpreservationskeletalagedrhesus

Similar Articles

Cited By