Polygalasaponin F induces long-term potentiation in adult rat hippocampus via NMDA receptor activation.

Feng Sun, Jian-dong Sun, Ning Han, Chuang-jun Li, Yu-he Yuan, Dong-ming Zhang, Nai-hong Chen
Author Information
  1. Feng Sun: State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Abstract

AIM: To investigate the effect and underlying mechanisms of polygalasaponin F (PGSF), a triterpenoid saponin isolated from Polygala japonica, on long-term potentiation (LTP) in hippocampus dentate gyrus (DG) of anesthetized rats.
METHODS: Population spike (PS) of hippocampal DG was recorded in anesthetized male Wistar rats. PGSF, the NMDAR inhibitor MK801 and the CaMKII inhibitor KN93 were intracerebroventricularly administered. Western blotting analysis was used to examine the phosphorylation expressions of NMDA receptor subunit 2B (NR2B), Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB).
RESULTS: Intracerebroventricular administration of PGSF (1 and 10 μmol/L) produced long-lasting increase of PS amplitude in hippocampal DG in a dose-dependent manner. Pre-injection of MK801 (100 μmol/L) or KN93 (100 μmol/L) completely blocked PGSF-induced LTP. Furthermore, the phosphorylation of NR2B, CaMKII, ERK, and CREB in hippocampus was significantly increased 5-60 min after LTP induction. The up-regulation of p-CaMKII expression could be completely abolished by pre-injection of MK801. The up-regulation of p-ERK and p-CREB expressions could be partially blocked by pre-injection of KN93.
CONCLUSION: PGSF could induce LTP in hippocampal DG in anesthetized rats via NMDAR activation mediated by CaMKII, ERK and CREB signaling pathway.

References

  1. Prog Brain Res. 2007;163:567-76 [PMID: 17765738]
  2. Exp Neurol. 1995 Jan;131(1):83-92 [PMID: 7895815]
  3. J Biol Chem. 1995 Aug 25;270(34):20036-41 [PMID: 7544350]
  4. Nat Neurosci. 2000 Jul;3(7):661-9 [PMID: 10862698]
  5. Acta Pharmacol Sin. 2008 Sep;29(9):1119-26 [PMID: 18718181]
  6. Zhongguo Yao Li Xue Bao. 1999 Feb;20(2):112-6 [PMID: 10437155]
  7. J Neurochem. 1994 Oct;63(4):1529-37 [PMID: 7931307]
  8. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10452-6 [PMID: 8816821]
  9. Acta Pharmacol Sin. 2009 Sep;30(9):1211-9 [PMID: 19684611]
  10. Physiol Rev. 2004 Jan;84(1):87-136 [PMID: 14715912]
  11. Cell. 1994 Oct 7;79(1):59-68 [PMID: 7923378]
  12. Eur J Neurosci. 2006 Jun;23(11):2829-46 [PMID: 16819972]
  13. Neuron. 2002 Apr 25;34(3):447-62 [PMID: 11988175]
  14. Nat Rev Neurosci. 2004 Mar;5(3):173-83 [PMID: 14976517]
  15. Trends Neurosci. 1994 Oct;17(10):406-12 [PMID: 7530878]
  16. Nature. 1991 Oct 10;353(6344):558-60 [PMID: 1656271]
  17. Chem Pharm Bull (Tokyo). 1995 Jan;43(1):115-20 [PMID: 7895302]
  18. Acta Pharmacol Sin. 2001 Dec;22(12):1099-102 [PMID: 11749807]
  19. Biol Psychol. 2006 Jul;73(1):3-18 [PMID: 16473455]
  20. Science. 1998 Feb 6;279(5352):870-3 [PMID: 9452388]
  21. Acta Pharmacol Sin. 2011 Sep;32(9):1087-8 [PMID: 21804573]
  22. J Neurosci. 1992 Jan;12(1):21-34 [PMID: 1345945]
  23. Curr Opin Pharmacol. 2007 Feb;7(1):77-85 [PMID: 17085074]
  24. Learn Mem. 2010 May 21;17(6):280-3 [PMID: 20495061]
  25. Neuropsychopharmacology. 2008 Jan;33(1):18-41 [PMID: 17728696]
  26. Acta Pharmacol Sin. 2011 Jul;32(7):861-72 [PMID: 21685929]
  27. J Neurosci. 2007 May 9;27(19):5190-9 [PMID: 17494705]
  28. Pharmacol Biochem Behav. 2002 Jan-Feb;71(1-2):191-5 [PMID: 11812522]
  29. Biochem J. 2002 Jun 15;364(Pt 3):593-611 [PMID: 11931644]
  30. Nat Neurosci. 2002 Jan;5(1):27-33 [PMID: 11740502]
  31. Trends Cell Biol. 2000 Aug;10(8):322-8 [PMID: 10884684]
  32. Cell. 1996 Dec 27;87(7):1327-38 [PMID: 8980238]
  33. Neuron. 1996 May;16(5):973-82 [PMID: 8630255]
  34. Cell. 2004 Feb 6;116(3):467-79 [PMID: 15016380]
  35. J Neurosci. 1997 Jul 1;17(13):5129-35 [PMID: 9185550]
  36. Science. 1992 Jul 10;257(5067):206-11 [PMID: 1321493]
  37. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2808-13 [PMID: 11226322]
  38. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11175-9 [PMID: 7479960]
  39. Neuron. 1995 Aug;15(2):443-52 [PMID: 7646896]
  40. Nat Rev Neurosci. 2004 Apr;5(4):317-28 [PMID: 15034556]
  41. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7697-704 [PMID: 10393883]

MeSH Term

Animals
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Cyclic AMP Response Element-Binding Protein
Dentate Gyrus
Extracellular Signal-Regulated MAP Kinases
Long-Term Potentiation
Male
Phosphorylation
Polygala
Rats
Rats, Wistar
Receptors, N-Methyl-D-Aspartate
Saponins
Triterpenes

Chemicals

Cyclic AMP Response Element-Binding Protein
NR2B NMDA receptor
Receptors, N-Methyl-D-Aspartate
Saponins
Triterpenes
polygalasaponin F
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Extracellular Signal-Regulated MAP Kinases

Word Cloud

Created with Highcharts 10.0.0PGSFLTPDGCaMKIIhippocampusanesthetizedratshippocampalMK801KN93ERKCREBμmol/LFlong-termpotentiationPSNMDARinhibitorphosphorylationexpressionsNMDAreceptorNR2Bkinase100completelyblockedup-regulationpre-injectionviaactivationAIM:investigateeffectunderlyingmechanismspolygalasaponintriterpenoidsaponinisolatedPolygalajaponicadentategyrusMETHODS:PopulationspikerecordedmaleWistarintracerebroventricularlyadministeredWesternblottinganalysisusedexaminesubunit2BCa2+/calmodulin-dependentIIextracellularsignal-regulatedcAMPresponseelement-bindingproteinRESULTS:Intracerebroventricularadministration110producedlong-lastingincreaseamplitudedose-dependentmannerPre-injectionPGSF-inducedFurthermoresignificantlyincreased5-60mininductionp-CaMKIIexpressionabolishedp-ERKp-CREBpartiallyCONCLUSION:inducemediatedsignalingpathwayPolygalasaponininducesadultrat

Similar Articles

Cited By