Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia.

Lorenzo Capretto, Stefania Mazzitelli, Eleonora Brognara, Ilaria Lampronti, Dario Carugo, Martyn Hill, Xunli Zhang, Roberto Gambari, Claudio Nastruzzi
Author Information
  1. Lorenzo Capretto: Engineering Sciences, University of Southampton, Southampton, UK.

Abstract

This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic(®) block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of β-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying β-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for β-thalassemia.

Keywords

References

  1. Blood. 2003 Aug 15;102(4):1276-81 [PMID: 12738678]
  2. J Pharm Sci. 2009 Apr;98(4):1452-62 [PMID: 18704956]
  3. Int J Pharm. 2011 Feb 14;404(1-2):271-80 [PMID: 21093556]
  4. N Engl J Med. 1986 Dec 4;315(23):1433-8 [PMID: 2431313]
  5. Nanomedicine. 2010 Dec;6(6):714-29 [PMID: 20542144]
  6. Mol Cell Biol. 2011 Feb;31(4):876-83 [PMID: 21173165]
  7. J Control Release. 2002 Aug 21;82(2-3):189-212 [PMID: 12175737]
  8. Biomaterials. 2002 Feb;23(3):873-9 [PMID: 11771706]
  9. Nat Nanotechnol. 2007 Dec;2(12):751-60 [PMID: 18654426]
  10. Br J Haematol. 1999 Feb;104(2):258-65 [PMID: 10050705]
  11. Bioconjug Chem. 2005 Jan-Feb;16(1):122-30 [PMID: 15656583]
  12. Blood. 2000 May 1;95(9):2967-74 [PMID: 10779447]
  13. Mol Pharm. 2008 Jul-Aug;5(4):505-15 [PMID: 18672949]
  14. Eur J Pharm Biopharm. 2010 Oct;76(2):147-58 [PMID: 20600891]
  15. J Hepatol. 2005 May;42(5):736-43 [PMID: 15826724]
  16. J Control Release. 2009 Sep 15;138(3):214-23 [PMID: 19376167]
  17. Biochemistry. 2010 Dec 14;49(49):10543-52 [PMID: 21067184]
  18. Pharmacol Ther. 2006 Dec;112(3):630-48 [PMID: 16815554]
  19. J Control Release. 2000 Aug 10;68(2):237-49 [PMID: 10925132]
  20. Crit Rev Ther Drug Carrier Syst. 2003;20(5):357-403 [PMID: 14959789]
  21. Am J Med Sci. 1994 Mar;307(3):167-72 [PMID: 8160706]
  22. Eur J Pharm Biopharm. 2006 Nov;64(3):261-8 [PMID: 16884896]
  23. Mini Rev Med Chem. 2008 Apr;8(4):331-49 [PMID: 18473925]
  24. J Am Chem Soc. 2003 May 14;125(19):5745-53 [PMID: 12733914]
  25. Nano Lett. 2008 Sep;8(9):2906-12 [PMID: 18656990]
  26. Eur J Pharm Biopharm. 2007 Mar;65(3):259-69 [PMID: 17196803]
  27. Biomaterials. 2006 Aug;27(24):4356-73 [PMID: 16650890]
  28. J Control Release. 2010 Apr 2;143(1):2-12 [PMID: 19925835]
  29. Biol Pharm Bull. 2000 Aug;23(8):926-9 [PMID: 10963297]
  30. J Nat Prod. 2008 Feb;71(2):199-207 [PMID: 18197601]
  31. J Colloid Interface Sci. 2011 May 1;357(1):243-51 [PMID: 21353232]
  32. J Control Release. 2005 Dec 5;109(1-3):169-88 [PMID: 16289422]
  33. J Am Chem Soc. 2003 Oct 1;125(39):11993-2000 [PMID: 14505421]
  34. Pharmacol Rev. 2001 Jun;53(2):283-318 [PMID: 11356986]
  35. Genomics. 2006 Sep;88(3):309-15 [PMID: 16631345]
  36. J Control Release. 2008 Jun 4;128(2):99-112 [PMID: 18325619]
  37. Lab Chip. 2011 May 21;11(10):1776-85 [PMID: 21472178]
  38. Br J Cancer. 2004 Jun 1;90(11):2085-91 [PMID: 15150584]
  39. ACS Nano. 2010 Apr 27;4(4):2077-87 [PMID: 20356060]
  40. J Control Release. 2007 Oct 8;122(3):324-30 [PMID: 17669540]
  41. Mol Pharm. 2008 Jul-Aug;5(4):496-504 [PMID: 18611037]
  42. BMB Rep. 2009 Aug 31;42(8):493-9 [PMID: 19712585]
  43. Eur J Pharm Biopharm. 2007 Mar;65(3):406-13 [PMID: 17291732]
  44. Cancer. 2007 Dec 15;110(12):2682-90 [PMID: 17973266]
  45. J Drug Target. 2007 Aug-Sep;15(7-8):507-17 [PMID: 17671897]
  46. J Biol Chem. 1996 Nov 8;271(45):28220-8 [PMID: 8910439]
  47. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4485-9 [PMID: 6205398]
  48. Curr Med Chem. 2007;14(2):199-212 [PMID: 17266579]
  49. J Control Release. 2004 Mar 5;95(2):161-71 [PMID: 14980765]
  50. Oncologist. 2001;6(2):162-76 [PMID: 11306728]
  51. Biomaterials. 1999 Aug;20(15):1427-35 [PMID: 10454015]
  52. Phys Rev Lett. 2003 Sep 12;91(11):118302 [PMID: 14525460]

MeSH Term

Analysis of Variance
Cell Differentiation
Cells, Cultured
Chemistry, Pharmaceutical
Erythrocytes
Erythroid Precursor Cells
Humans
K562 Cells
Lab-On-A-Chip Devices
Micelles
Microfluidics
Plicamycin
Polymers
Reproducibility of Results
beta-Thalassemia

Chemicals

Micelles
Polymers
mithramycin A
Plicamycin

Word Cloud

Created with Highcharts 10.0.0PM-MTHmicrofluidicerythroidproductionproducedhumancellsHbFβ-thalassemiareportdrugencapsulatedpolymericmicellesapproacheffectcomparedconventionalbulkmixingproceduresmicrofluidicsdifferentiationprecursorincreaseclinicalsymptomspotentialtherapeuticprotocolshowsDNA-bindingmithramycincanefficientlybasedPluronic®blockcopolymersnewdifferentparametersinvestigatedcharacteristicsanalysisrevealedprovidesusefulplatformimprovedcontrollabilityreproducibilitysmallersizepolydispersityFinallyinvestigationeffectserythroleukemiareporteddemonstratedexhibitedslightlylowertoxicitypronounceddifferentiativeactivityfreeadditionableupregulatepreferentiallyγ-globinmessengerribonucleicacidfetalhemoglobinaccumulationpercentageHbF-containingcontentwithoutstimulatingα-globingeneexpressionresponsibleresultsrepresentimportantfirststeptowardapplicationsincealleviateunderlyingsicklecellanemiaconclusionsuggestswarrantsevaluationMithramycintechnologynovelbeta-thalassemiadesignexperimentslab-on-a-chip

Similar Articles

Cited By (10)