Perfect and imperfect nucleosome positioning in yeast.

Hope A Cole, V Nagarajavel, David J Clark
Author Information
  1. Hope A Cole: Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Development, National Institues of Health, MD 20892, USA.

Abstract

Numerous studies of nucleosome positioning have shown that nucleosomes almost invariably adopt one of several alternative overlapping positions on a short DNA fragment in vitro. We define such a set of overlapping positions as a "position cluster", and the 5S RNA gene positioning sequence is presented as an example. The notable exception is the synthetic 601-sequence, which can position a nucleosome perfectly in vitro, though not in vivo. Many years ago, we demonstrated that nucleosome position clusters are present on the CUP1 and HIS3 genes in native yeast chromatin. Recently, using genome-wide paired-end sequencing of nucleosomes, we have shown that position clusters are the general rule in yeast chromatin, not the exception. We argue that, within a cell population, one of several alternative nucleosomal arrays is formed on each gene. We show how position clusters and alternative arrays can give rise to typical nucleosome occupancy profiles, and that position clusters are disrupted by transcriptional activation. The centromeric nucleosome is a rare example of perfect positioning in vivo. It is, however, a special case, since it contains the centromeric histone H3 variant instead of normal H3. Perfect positioning might be due to centromeric sequence-specific DNA binding proteins. Finally, we point out that the existence of position clusters implies that the putative nucleosome code is degenerate. We suggest that degeneracy might be a crucial point in the debate concerning the code. This article is part of a Special Issue entitled: Chromatin in time and space.

References

  1. J Mol Biol. 1999 Apr 30;288(2):213-29 [PMID: 10329138]
  2. Trends Biochem Sci. 1997 Mar;22(3):93-7 [PMID: 9066259]
  3. Genes Dev. 1999 Mar 15;13(6):686-97 [PMID: 10090725]
  4. Epigenetics Chromatin. 2010 Jul 01;3(1):13 [PMID: 20594331]
  5. Cell. 1992 Oct 2;71(1):11-22 [PMID: 1394427]
  6. Nat Struct Mol Biol. 2009 Aug;16(8):847-52 [PMID: 19620965]
  7. J Mol Biol. 1991 Jul 5;220(1):101-10 [PMID: 2067009]
  8. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12687-92 [PMID: 21768332]
  9. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  10. Nucleic Acids Res. 2011 May;39(9):3520-8 [PMID: 21245049]
  11. EMBO Rep. 2010 Oct;11(10):751-7 [PMID: 20829883]
  12. Nat Struct Mol Biol. 2010 Aug;17(8):923 [PMID: 20683475]
  13. Biochemistry. 2005 Nov 1;44(43):14329-34 [PMID: 16245949]
  14. Nucleic Acids Res. 2011 Dec;39(22):9521-35 [PMID: 21880600]
  15. Nucleic Acids Res. 1994 Mar 25;22(6):937-45 [PMID: 8152924]
  16. Mol Cell Biol. 2011 Aug;31(16):3485-96 [PMID: 21690290]
  17. J Biomol Struct Dyn. 2010 Jun;27(6):781-93 [PMID: 20232933]
  18. Cell. 2008 Jul 11;134(1):74-84 [PMID: 18614012]
  19. J Mol Biol. 1984 Aug 25;177(4):715-33 [PMID: 6384525]
  20. Mol Cell Biol. 2006 Nov;26(22):8607-22 [PMID: 16982689]
  21. Proc Natl Acad Sci U S A. 1983 Jan;80(1):51-5 [PMID: 6572008]
  22. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1183-8 [PMID: 9037027]
  23. J Biol Chem. 2001 Sep 14;276(37):35209-16 [PMID: 11461917]
  24. Science. 2011 May 20;332(6032):977-80 [PMID: 21596991]
  25. J Mol Biol. 1998 Feb 13;276(1):19-42 [PMID: 9514715]
  26. Nat Struct Mol Biol. 2010 Aug;17(8):920-3 [PMID: 20683474]
  27. Mol Cell Biol. 2001 Jan;21(2):534-47 [PMID: 11134341]
  28. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  29. Bull Math Biol. 1989;51(4):417-32 [PMID: 2673451]
  30. Science. 2011 Sep 23;333(6050):1758-60 [PMID: 21940898]
  31. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]

Grants

  1. Z99 MH999999/Intramural NIH HHS
  2. Z99 DA999999/Intramural NIH HHS
  3. Z99 HD999999/Intramural NIH HHS
  4. Z99 OD999999/Intramural NIH HHS
  5. Z99 HL999999/Intramural NIH HHS

MeSH Term

Animals
Base Sequence
Centromere
Chromatin Assembly and Disassembly
Chromosomes, Fungal
Fungal Proteins
Gene Expression Regulation, Fungal
Genome, Fungal
Histones
Humans
Nucleic Acid Conformation
Nucleosomes
Yeasts

Chemicals

Fungal Proteins
Histones
Nucleosomes

Word Cloud

Created with Highcharts 10.0.0nucleosomepositionpositioningclustersalternativeyeastcentromericshownnucleosomesoneseveraloverlappingpositionsDNAvitrogeneexampleexceptioncanvivochromatinarraysH3PerfectmightpointcodeNumerousstudiesalmostinvariablyadoptshortfragmentdefineset"positioncluster"5SRNAsequencepresentednotablesynthetic601-sequenceperfectlythoughManyyearsagodemonstratedpresentCUP1HIS3genesnativeRecentlyusinggenome-widepaired-endsequencinggeneralrulearguewithincellpopulationnucleosomalformedshowgiverisetypicaloccupancyprofilesdisruptedtranscriptionalactivationrareperfecthoweverspecialcasesincecontainshistonevariantinsteadnormalduesequence-specificbindingproteinsFinallyexistenceimpliesputativedegeneratesuggestdegeneracycrucialdebateconcerningarticlepartSpecialIssueentitled:Chromatintimespaceimperfect

Similar Articles

Cited By