Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait.

Leila T Shirai, Suzanne V Saenko, Roberto A Keller, Maria A Jerónimo, Paul M Brakefield, Henri Descimon, Niklas Wahlberg, Patrícia Beldade
Author Information
  1. Leila T Shirai: Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156 Oeiras, Portugal.

Abstract

BACKGROUND: The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects.
RESULTS: We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eye)spot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-)recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes.
CONCLUSIONS: The evolutionary history of gene (co-)recruitment is consistent with both divergence from a recruited putative ancestral network, and with independent co-option of individual genes. The diversity in the combinations of genes expressed in association with eyespot formation does not parallel diversity in characteristics of the adult phenotype. We discuss these results in the context of inferring homology. Our study underscores the importance of widening the representation of phylogenetic, morphological, and genetic diversity in order to establish general principles about the mechanisms behind the evolution of novel traits.

References

  1. BMC Evol Biol. 2008 Mar 26;8:94 [PMID: 18366752]
  2. Biol Rev Camb Philos Soc. 2005 Nov;80(4):573-88 [PMID: 16221330]
  3. Dev Genes Evol. 2009 Dec;219(11-12):577-87 [PMID: 20182886]
  4. Evodevo. 2011 Apr 19;2:9 [PMID: 21504568]
  5. Science. 1995 Nov 24;270(5240):1363-6 [PMID: 7481825]
  6. Curr Biol. 2009 Dec 29;19(24):2057-65 [PMID: 20005109]
  7. Curr Biol. 2005 Jan 26;15(2):R52-3 [PMID: 15668155]
  8. Trends Ecol Evol. 1997 Oct;12(10):405-8 [PMID: 21238133]
  9. Nat Rev Genet. 2005 Sep;6(9):709-15 [PMID: 16094311]
  10. EMBO J. 1994 Jan 1;13(1):168-79 [PMID: 7905822]
  11. Evol Dev. 2001 Mar-Apr;3(2):109-19 [PMID: 11341673]
  12. Curr Biol. 2004 Jul 13;14(13):1159-66 [PMID: 15242612]
  13. J Exp Zool B Mol Dev Evol. 2011 May 15;316B(3):165-70 [PMID: 21462311]
  14. Semin Cell Dev Biol. 2009 Feb;20(1):65-71 [PMID: 18977308]
  15. Proc Biol Sci. 2005 Aug 7;272(1572):1541-6 [PMID: 16048768]
  16. Evol Dev. 2008 May-Jun;10(3):360-74 [PMID: 18460097]
  17. Annu Rev Cell Dev Biol. 2002;18:53-80 [PMID: 12142278]
  18. Evolution. 2009 Nov;63(11):2771-89 [PMID: 19545263]
  19. Nat Rev Genet. 2009 Feb;10(2):141-8 [PMID: 19139764]
  20. Nature. 2005 Feb 3;433(7025):481-7 [PMID: 15690032]
  21. Proc Biol Sci. 2009 Dec 22;276(1677):4295-302 [PMID: 19793750]
  22. Syst Biol. 2001 Nov-Dec;50(6):913-25 [PMID: 12116640]
  23. Cell. 1990 May 4;61(3):523-34 [PMID: 2185893]
  24. Theor Popul Biol. 2000 May;57(3):187-95 [PMID: 10828213]
  25. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2117-22 [PMID: 10681430]
  26. BMC Biol. 2011 Apr 28;9:26 [PMID: 21527048]
  27. Nat Rev Genet. 2002 Jun;3(6):442-52 [PMID: 12042771]
  28. Dev Biol. 1980 Dec;80(2):267-74 [PMID: 7004953]
  29. Dev Biol. 1995 Mar;168(1):112-23 [PMID: 7883067]
  30. PLoS Biol. 2009 Feb 24;7(2):e37 [PMID: 19243218]
  31. Development. 1999 Jun;126(12):2653-62 [PMID: 10331977]
  32. Philos Trans R Soc Lond B Biol Sci. 2008 Apr 27;363(1496):1549-55 [PMID: 18192179]
  33. Nature. 1996 Nov 21;384(6606):236-42 [PMID: 12809139]
  34. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8605-12 [PMID: 17494759]
  35. Proc Biol Sci. 2005 Aug 7;272(1572):1577-86 [PMID: 16048773]
  36. Mol Biol Evol. 2010 Dec;27(12):2864-78 [PMID: 20624848]
  37. PLoS Comput Biol. 2005 Jun;1(1):e3 [PMID: 16103904]
  38. Proc Biol Sci. 2012 Mar 22;279(1731):1093-9 [PMID: 21920981]
  39. Proc Biol Sci. 2007 Mar 22;274(1611):845-51 [PMID: 17251116]
  40. Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8992-7 [PMID: 19451631]
  41. Curr Biol. 2001 Oct 16;11(20):1578-85 [PMID: 11676917]
  42. Annu Rev Cell Dev Biol. 1997;13:333-61 [PMID: 9442877]
  43. Proc Biol Sci. 2009 Jul 7;276(1666):2369-75 [PMID: 19364741]
  44. Evol Dev. 2007 Jan-Feb;9(1):2-9 [PMID: 17227362]
  45. Science. 1994 Jul 1;265(5168):109-14 [PMID: 7912449]
  46. Bioessays. 2008 Apr;30(4):367-73 [PMID: 18348184]
  47. Evol Dev. 2003 Mar-Apr;5(2):169-79 [PMID: 12622734]
  48. Science. 1999 Jan 22;283(5401):532-4 [PMID: 9915699]
  49. BMC Biol. 2010 Aug 26;8:111 [PMID: 20796293]
  50. Dev Biol. 1995 Dec;172(2):452-65 [PMID: 8612963]
  51. BMC Dev Biol. 2006 Nov 07;6:52 [PMID: 17090321]
  52. Genes Dev. 1991 Dec;5(12B):2467-80 [PMID: 1684334]
  53. J Exp Zool. 2001 Oct 15;291(3):213-25 [PMID: 11598911]

MeSH Term

Animals
Butterflies
Evolution, Molecular
Gene Expression Regulation, Developmental
Genes, Developmental
Genes, Insect
Likelihood Functions
Models, Genetic
Pigmentation
Wings, Animal

Word Cloud

Created with Highcharts 10.0.0genesrecruitmentnovelevolutionaryhistoryformationtraitsco-optionconservedcombinationsdiversityorigindiversificationdevelopmentalmanyacrosswhetherinvolvesindividualtraitpatternelementsbutterflyeyespotsgeneticAntennapediaNotchDistal-lessSpaltco-casesdifferentgeneassociatedassociationBACKGROUND:modificationimportantaspectsbiologicalStudiescombiningconceptsapproachesgeneticsbiologyuncoveredexampleslineageslineage-restrictedHoweverlittleknownrelationship-forexamplewholepartsexistingnetworksoccursredeploymentdenovorewiringusemodelcolorwingscalledexplorequestionsEyespotsgreatlydiversifiednaturalsexualselectioncircuitriessharedinsectsRESULTS:investigatedco-recruitmentfourtranscriptionregulatorslarvalwingdiscregioncirculardevelopco-localizationpresumptiveeyespotorganizersexamined13speciesprovidinglargestcomparativedatasetavailablesystemfoundvariationfamiliessubfamiliestribesPhylogeneticreconstructionsparsimonymaximumlikelihoodmethodsrevealedunambiguousresolvedsingleeyespot-associatedexpressionhomoplasticeventsflexibilitytargetedincludesmorphologicallysimilarwellidenticalproteinphenotypesCONCLUSIONS:consistentdivergencerecruitedputativeancestralnetworkindependentexpressedeyespotparallelcharacteristicsadultphenotypediscussresultscontextinferringhomologystudyunderscoresimportancewideningrepresentationphylogeneticmorphologicalorderestablishgeneralprinciplesmechanismsbehindevolutionEvolutionary

Similar Articles

Cited By