Evolution and function of the extended miR-2 microRNA family.

Antonio Marco, Katarzyna Hooks, Sam Griffiths-Jones
Author Information
  1. Antonio Marco: Faculty of Life Sciences, University of Manchester, Manchester, UK. antonio.marco@manchester.ac.uk

Abstract

MicroRNAs are essential post-transcriptional regulators. Many animal microRNAs are clustered in the genome, and it has been shown that clustered microRNAs may be transcribed as a single transcript. Polycistronic microRNAs are often members of the same family, suggesting a role of tandem duplication in the emergence of clusters. The miR-2 microRNA family is the largest in Drosophila melanogaster, with 8 members that are mostly clustered in the genome. Previous studies suggest that the copy number and genomic distribution of miR-2 family members has been subject to significant change during evolution. The effects of such changes on their function are still unknown. Here we study the evolution of function in the miR-2 family. Our analyses show that, in spite of the change in number and organization among invertebrates, most miR-2 loci produce very similar mature microRNA products. Multiple mature miR-2 sequences are predicted to target genes involved in neural development in Drosophila. These targeting properties are conserved in the distant species Caenorhabditis elegans. Duplication followed by functional diversification is frequent during protein-coding gene evolution. However, our results suggest that the production of microRNA clusters by gene duplication rarely involves functional changes. This pattern of functional redundancy among clustered paralogous microRNAs reflects birth-and-death evolutionary dynamics. However, we identified a small number of miR-2 sequences in Drosophila that may have undergone functional shifts associated with genomic rearrangements. Therefore, redundancy in microRNA families may facilitate the acquisition of novel functional features.

References

  1. Science. 2001 Oct 26;294(5543):862-4 [PMID: 11679672]
  2. Genome Res. 2006 Apr;16(4):510-9 [PMID: 16520461]
  3. Cell Res. 2008 Oct;18(10):985-96 [PMID: 18711447]
  4. Nucleic Acids Res. 2003 Sep 1;31(17):4973-80 [PMID: 12930946]
  5. Genome Res. 2008 Dec;18(12):2005-15 [PMID: 18981266]
  6. BMC Genomics. 2010 Feb 02;11:85 [PMID: 20122259]
  7. Development. 2011 Jun;138(11):2197-206 [PMID: 21558369]
  8. Cell. 2009 Jan 23;136(2):215-33 [PMID: 19167326]
  9. Mol Biol Evol. 2010 Mar;27(3):671-83 [PMID: 19933172]
  10. Genomics. 2011 Aug;98(2):96-111 [PMID: 21640815]
  11. Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7 [PMID: 21037258]
  12. Genome Biol. 2003;5(1):R1 [PMID: 14709173]
  13. Database (Oxford). 2011 Jul 23;2011:bar030 [PMID: 21785142]
  14. Development. 2004 Dec;131(24):6093-105 [PMID: 15537690]
  15. BMC Genomics. 2010 Jan 20;11:52 [PMID: 20089182]
  16. BMC Genomics. 2011 Jul 19;12:371 [PMID: 21771325]
  17. Bioinformatics. 2005 Jan 15;21(2):257-9 [PMID: 15377506]
  18. Genome Biol Evol. 2010 Jul 12;2:180-9 [PMID: 20624724]
  19. Nucleic Acids Res. 2005 May 12;33(8):2697-706 [PMID: 15891114]
  20. Science. 2001 Oct 26;294(5543):853-8 [PMID: 11679670]
  21. Genetics. 1999 Apr;151(4):1531-45 [PMID: 10101175]
  22. Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18017-22 [PMID: 16330759]
  23. Bioinformatics. 2006 Feb 15;22(4):445-52 [PMID: 16357030]
  24. RNA. 2005 Mar;11(3):241-7 [PMID: 15701730]
  25. Science. 2001 Oct 26;294(5543):858-62 [PMID: 11679671]
  26. Genome Res. 2007 May;17(5):612-7 [PMID: 17416744]
  27. BMC Genomics. 2008 Nov 27;9:564 [PMID: 19038026]
  28. Annu Rev Genet. 2005;39:121-52 [PMID: 16285855]
  29. Cell. 2005 Jul 1;121(7):1097-108 [PMID: 15989958]
  30. Genome Res. 2007 Dec;17(12):1850-64 [PMID: 17989254]
  31. Front Genet. 2011 May 26;2:25 [PMID: 22303321]
  32. Nat Rev Mol Cell Biol. 2009 Feb;10(2):141-8 [PMID: 19145236]
  33. J Biomed Biotechnol. 2009;2009:594738 [PMID: 19759918]
  34. Genome Biol Evol. 2010;2:686-96 [PMID: 20817720]
  35. Nature. 2008 Jun 5;453(7196):798-802 [PMID: 18463631]
  36. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  37. Bioinformatics. 2009 Aug 1;25(15):1974-5 [PMID: 19398448]
  38. Bioinformatics. 2009 Oct 1;25(19):2473-7 [PMID: 19633094]
  39. BMC Bioinformatics. 2005 Jul 05;6:168 [PMID: 15998470]
  40. Evol Dev. 2011 Jan-Feb;13(1):15-27 [PMID: 21210939]
  41. BMC Genomics. 2006 Feb 15;7:25 [PMID: 16480513]
  42. Cell. 2004 Jan 23;116(2):281-97 [PMID: 14744438]
  43. Evol Dev. 2009 Jan-Feb;11(1):50-68 [PMID: 19196333]
  44. Bioinformatics. 2012 Feb 1;28(3):318-23 [PMID: 22171334]
  45. Insect Mol Biol. 2010 Dec;19(6):799-805 [PMID: 20807255]

Grants

  1. 086809/Wellcome Trust
  2. BB/G011346/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Animals
Base Sequence
Conserved Sequence
Evolution, Molecular
Humans
MicroRNAs
Molecular Sequence Annotation
Molecular Sequence Data
Multigene Family
Phylogeny
Sequence Alignment

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0familymir-2microRNAfunctionalmicroRNAsclusteredmaymembersDrosophilanumberevolutionfunctiongenomeduplicationclusterssuggestgenomicchangechangesamongmaturemiR-2sequencesgeneHoweverredundancyMicroRNAsessentialpost-transcriptionalregulatorsManyanimalshowntranscribedsingletranscriptPolycistronicoftensuggestingroletandememergencelargestmelanogaster8mostlyPreviousstudiescopydistributionsubjectsignificanteffectsstillunknownstudyanalysesshowspiteorganizationinvertebrateslociproducesimilarproductsMultiplepredictedtargetgenesinvolvedneuraldevelopmenttargetingpropertiesconserveddistantspeciesCaenorhabditiselegansDuplicationfolloweddiversificationfrequentprotein-codingresultsproductionrarelyinvolvespatternparalogousreflectsbirth-and-deathevolutionarydynamicsidentifiedsmallundergoneshiftsassociatedrearrangementsThereforefamiliesfacilitateacquisitionnovelfeaturesEvolutionextended

Similar Articles

Cited By