Toward a continuous intravascular glucose monitoring system.

Brooke Beier, Katherine Musick, Akira Matsumoto, Alyssa Panitch, Eric Nauman, Pedro Irazoqui
Author Information
  1. Brooke Beier: The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA. bbeier@purdue.edu

Abstract

Proof-of-concept studies that display the potential of using a glucose-sensitive hydrogel as a continuous glucose sensor are presented. The swelling ratio, porosity, and diffusivity of the hydrogel increased with glucose concentration. In glucose solutions of 50, 100, 200, and 300 mg/dL, the hydrogel swelling ratios were 4.9, 12.3, 15.9, and 21.7, respectively, and the swelling was reversible. The impedance across the hydrogel depended solely on the thickness and had an average increase of 47 Ω/mm. The hydrogels exposed to a hyperglycemic solution were more porous than the hydrogels exposed to a normal glycemic solution. The diffusivity of 390 Da MW fluorescein isothiocyanate in hydrogels exposed to normal and hyperglycemic solutions was examined using fluorescence recovery after photobleaching and was found to be 9.3 × 10(-14) and 41.4 × 10(-14) m(2)/s, respectively, compared to 6.2 × 10(-10) m(2)/s in glucose solution. There was no significant difference between the permeability of hydrogels in normal and hyperglycemic glucose solutions with averages being 5.26 × 10(-17) m(2) and 5.80 × 10(-17) m(2), respectively, which resembles 2-4% agarose gels. A prototype design is presented for continuous intravascular glucose monitoring by attaching a glucose sensor to an FDA-approved stent.

Keywords

References

  1. Ann Biomed Eng. 1999 Jul-Aug;27(4):517-24 [PMID: 10468236]
  2. Diabetes Care. 2004 May;27(5):1047-53 [PMID: 15111519]
  3. Diabetes Care. 2008 Mar;31(3):596-615 [PMID: 18308683]
  4. J Interv Cardiol. 2009 Oct;22(5):479-87 [PMID: 19807844]
  5. JAMA. 1996 Nov 6;276(17):1409-15 [PMID: 8892716]
  6. Biophys J. 1976 Sep;16(9):1055-69 [PMID: 786399]
  7. Biophys J. 2002 Apr;82(4):2081-9 [PMID: 11916864]
  8. Biotechnol Bioeng. 1994 Feb 5;43(3):262-6 [PMID: 18615658]
  9. Am J Cardiol. 1990 Aug 15;66(4):493-6 [PMID: 2386120]
  10. Adv Drug Deliv Rev. 2002 Jan 17;54(1):79-98 [PMID: 11755707]
  11. Diabetes Care. 2000 Feb;23(2):143-5 [PMID: 10868819]
  12. Anal Chem. 1992 Mar 15;64(6):381A-386A [PMID: 1580356]
  13. Sensors (Basel). 2008 Jan 25;8(1):561-581 [PMID: 27879722]
  14. Cardiovasc Diabetol. 2003 Jan 08;2:1 [PMID: 12556246]
  15. Curr Opin Chem Biol. 2002 Oct;6(5):633-41 [PMID: 12413548]
  16. Eur Respir J. 2002 Dec;20(6):1519-24 [PMID: 12503713]
  17. Biomacromolecules. 2004 May-Jun;5(3):1038-45 [PMID: 15132698]
  18. IEEE Trans Biomed Eng. 2010 Jun;57(6):1487-96 [PMID: 20172781]
  19. Diabetologia. 2005 Aug;48(8):1445-53 [PMID: 15971059]

MeSH Term

Biosensing Techniques
Diffusion
Glucose
Hydrogel, Polyethylene Glycol Dimethacrylate
Isothiocyanates
Permeability

Chemicals

Isothiocyanates
Hydrogel, Polyethylene Glycol Dimethacrylate
Glucose

Word Cloud

Created with Highcharts 10.0.0glucosehydrogels×102hydrogelcontinuousmswellingsolutions9respectivelyexposedhyperglycemicsolutionnormalintravascularmonitoringusingsensorpresenteddiffusivity43-14/s5-17stentProof-of-conceptstudiesdisplaypotentialglucose-sensitiveratioporosityincreasedconcentration50100200300mg/dLratios1215217reversibleimpedanceacrossdependedsolelythicknessaverageincrease47Ω/mmporousglycemic390DaMWfluoresceinisothiocyanateexaminedfluorescencerecoveryphotobleachingfound41compared6-10significantdifferencepermeabilityaverages2680resembles2-4%agarosegelsprototypedesignattachingFDA-approvedTowardsystembiosensorspolymerswireless

Similar Articles

Cited By