Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide.

César de la Fuente-Núñez, Victoria Korolik, Manjeet Bains, Uyen Nguyen, Elena B M Breidenstein, Shawn Horsman, Shawn Lewenza, Lori Burrows, Robert E W Hancock
Author Information
  1. César de la Fuente-Núñez: Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.

Abstract

Biofilms cause up to 80% of infections and are difficult to treat due to their substantial multidrug resistance compared to their planktonic counterparts. Based on the observation that human peptide LL-37 is able to block biofilm formation at concentrations below its MIC, we screened for small peptides with antibiofilm activity and identified novel synthetic cationic peptide 1037 of only 9 amino acids in length. Peptide 1037 had very weak antimicrobial activity, but at 1/30th the MIC the peptide was able to effectively prevent biofilm formation (>50% reduction in cell biomass) by the Gram-negative pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia and Gram-positive Listeria monocytogenes. Using a flow cell system and a widefield fluorescence microscope, 1037 was shown to significantly reduce biofilm formation and lead to cell death in biofilms. Microarray and follow-up studies showed that, in P. aeruginosa, 1037 directly inhibited biofilms by reducing swimming and swarming motilities, stimulating twitching motility, and suppressing the expression of a variety of genes involved in biofilm formation (e.g., PA2204). Comparison of microarray data from cells treated with peptides LL-37 and 1037 enabled the identification of 11 common P. aeruginosa genes that have a role in biofilm formation and are proposed to represent functional targets of these peptides. Peptide 1037 shows promise as a potential therapeutic agent against chronic, recurrent biofilm infections caused by a variety of bacteria.

References

  1. J Bacteriol. 2005 Jul;187(14):4908-20 [PMID: 15995206]
  2. Chem Biol. 2008 Dec 22;15(12):1249-57 [PMID: 19101469]
  3. Nat Rev Microbiol. 2006 Jul;4(7):529-36 [PMID: 16778838]
  4. Nature. 2005 Aug 25;436(7054):1171-5 [PMID: 16121184]
  5. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14339-44 [PMID: 14617778]
  6. Drug Resist Updat. 2000 Aug;3(4):247-255 [PMID: 11498392]
  7. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11076-81 [PMID: 16043697]
  8. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202 [PMID: 17592147]
  9. J Bacteriol. 2002 Feb;184(4):1140-54 [PMID: 11807075]
  10. J Bacteriol. 2003 Apr;185(7):2066-79 [PMID: 12644476]
  11. J Bacteriol. 2007 Mar;189(5):2164-9 [PMID: 17158671]
  12. Science. 2010 Apr 30;328(5978):627-9 [PMID: 20431016]
  13. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  14. Nature. 1995 Feb 23;373(6516):721-4 [PMID: 7854459]
  15. J Bacteriol. 2008 Apr;190(8):2671-9 [PMID: 18245294]
  16. Nature. 2003 Nov 20;426(6964):306-10 [PMID: 14628055]
  17. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3776-81 [PMID: 20133590]
  18. Biochem Biophys Res Commun. 2010 May 28;396(2):246-51 [PMID: 20399752]
  19. Mol Microbiol. 2009 Dec;74(6):1380-92 [PMID: 19889094]
  20. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19484-9 [PMID: 17148599]
  21. J Bacteriol. 1999 Oct;181(19):5993-6002 [PMID: 10498711]
  22. Biochemistry. 1992 Mar 24;31(11):2998-3004 [PMID: 1372516]
  23. J Antimicrob Chemother. 2010 Jul;65(7):1399-404 [PMID: 20435779]
  24. J Microbiol Methods. 2003 Aug;54(2):269-76 [PMID: 12782382]
  25. Antimicrob Agents Chemother. 2006 Apr;50(4):1522-4 [PMID: 16569873]
  26. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12558-63 [PMID: 16894146]
  27. Mol Microbiol. 2003 Aug;49(4):905-18 [PMID: 12890017]
  28. Trends Microbiol. 2011 Aug;19(8):419-26 [PMID: 21664819]
  29. Mol Microbiol. 2006 May;60(4):1026-43 [PMID: 16677312]
  30. Nat Rev Microbiol. 2009 Sep;7(9):623-8 [PMID: 19648949]
  31. Antimicrob Agents Chemother. 2006 Nov;50(11):3674-9 [PMID: 16966394]
  32. Infect Immun. 2010 Oct;78(10):4088-100 [PMID: 20643851]
  33. Pulm Pharmacol Ther. 2008 Aug;21(4):595-9 [PMID: 18234534]
  34. Curr Top Microbiol Immunol. 2006;306:251-8 [PMID: 16909925]
  35. Peptides. 2011 Sep;32(9):1807-14 [PMID: 21849157]
  36. Antimicrob Agents Chemother. 2001 May;45(5):1337-42 [PMID: 11302792]
  37. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13870-5 [PMID: 21808031]
  38. Appl Environ Microbiol. 2009 Jun;75(12):4093-100 [PMID: 19376922]
  39. ACS Chem Biol. 2009 Jan 16;4(1):65-74 [PMID: 19055425]
  40. Front Microbiol. 2011 Jul 22;2:159 [PMID: 21811491]
  41. Nature. 2000 Aug 31;406(6799):959-64 [PMID: 10984043]
  42. Peptides. 2003 Nov;24(11):1681-91 [PMID: 15019199]
  43. Nat Rev Drug Discov. 2011 Dec 16;11(1):37-51 [PMID: 22173434]
  44. Mol Microbiol. 2006 Dec;62(5):1264-77 [PMID: 17059568]
  45. Microbiology (Reading). 2009 Mar;155(Pt 3):699-711 [PMID: 19246741]
  46. Antimicrob Agents Chemother. 2011 Oct;55(10):4560-8 [PMID: 21807976]
  47. Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a000398 [PMID: 20519345]
  48. Antimicrob Agents Chemother. 2007 Oct;51(10):3582-90 [PMID: 17664319]
  49. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  50. Dev Cell. 2002 Oct;3(4):593-603 [PMID: 12408810]
  51. Trends Microbiol. 2005 Jan;13(1):34-40 [PMID: 15639630]
  52. Nat Rev Microbiol. 2008 Jun;6(6):466-76 [PMID: 18461074]
  53. Nat Biotechnol. 2005 Aug;23(8):1008-12 [PMID: 16041366]
  54. Nature. 2000 Oct 12;407(6805):762-4 [PMID: 11048725]
  55. J Bacteriol. 2000 Nov;182(21):5990-6 [PMID: 11029417]
  56. Trends Biotechnol. 2009 Oct;27(10):582-90 [PMID: 19683819]
  57. Nat Biotechnol. 2006 Dec;24(12):1551-7 [PMID: 17160061]
  58. Nature. 2002 May 30;417(6888):552-5 [PMID: 12037568]
  59. Nat Rev Drug Discov. 2003 Feb;2(2):114-22 [PMID: 12563302]
  60. Water Sci Technol. 2007;55(8-9):337-43 [PMID: 17547003]
  61. Nature. 2001 Oct 25;413(6858):860-4 [PMID: 11677611]
  62. Antimicrob Agents Chemother. 1986 Dec;30(6):923-6 [PMID: 3028253]
  63. Infect Immun. 2008 Sep;76(9):4176-82 [PMID: 18591225]

Grants

  1. /Canadian Institutes of Health Research

MeSH Term

Anti-Bacterial Agents
Antimicrobial Cationic Peptides
Bacterial Translocation
Biofilms
Burkholderia cenocepacia
Gene Expression
Gene Expression Profiling
Humans
Listeria monocytogenes
Microbial Sensitivity Tests
Microscopy, Fluorescence
Pseudomonas aeruginosa

Chemicals

Anti-Bacterial Agents
Antimicrobial Cationic Peptides

Word Cloud

Created with Highcharts 10.0.0biofilmformation1037peptidepeptidescellaeruginosainfectionsLL-37ableMICsmallactivitysyntheticcationicPeptidebiofilmsPswarmingmotilityvarietygenesBiofilmscause80%difficulttreatduesubstantialmultidrugresistancecomparedplanktoniccounterpartsBasedobservationhumanblockconcentrationsscreenedantibiofilmidentifiednovel9aminoacidslengthweakantimicrobial1/30theffectivelyprevent>50%reductionbiomassGram-negativepathogensPseudomonasBurkholderiacenocepaciaGram-positiveListeriamonocytogenesUsingflowsystemwidefieldfluorescencemicroscopeshownsignificantlyreduceleaddeathMicroarrayfollow-upstudiesshoweddirectlyinhibitedreducingswimmingmotilitiesstimulatingtwitchingsuppressingexpressioninvolvedegPA2204Comparisonmicroarraydatacellstreatedenabledidentification11commonroleproposedrepresentfunctionaltargetsshowspromisepotentialtherapeuticagentchronicrecurrentcausedbacteriaInhibitionbacterial

Similar Articles

Cited By