Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis.

Heather D Ishak, Jessica L Miller, Ruchira Sen, Scot E Dowd, Eli Meyer, Ulrich G Mueller
Author Information
  1. Heather D Ishak: Section of Integrative Biology, 1 University Station (C0930), University of Texas at Austin, Austin, TX 78712, USA. heatherishak@gmail.com

Abstract

Fungus-growing ants employ several defenses against diseases, including disease-suppressing microbial biofilms on their integument and in fungal gardens. Here, we compare the phenology of microbiomes in natural nests of the temperate fungus-growing ant Trachymyrmex septentrionalis using culture-dependent isolations and culture-independent 16S-amplicon 454-sequencing. 454-sequencing revealed diverse actinobacteria associated with ants, including most prominently Solirubrobacter (12.2-30.9% of sequence reads), Pseudonocardia (3.5-42.0%), and Microlunatus (0.4-10.8%). Bacterial abundances remained relatively constant in monthly surveys throughout the annual active period (late winter to late summer), except Pseudonocardia abundance declined in females during the reproductive phase. Pseudonocardia species found on ants are phylogenetically different from those in gardens and soil, indicating ecological separation of these Pseudonocardia types. Because the pathogen Escovopsis is not known to infect gardens of T. septentrionalis, the ant-associated microbes do not seem to function in Escovopsis suppression, but could protect against ant diseases, help in nest sanitation, or serve unknown functions.

References

  1. Antonie Van Leeuwenhoek. 1997 Mar;71(3):243-8 [PMID: 9111918]
  2. Evolution. 2008 Nov;62(11):2894-912 [PMID: 18752608]
  3. Open Microbiol J. 2010 Aug 11;4:47-52 [PMID: 21339894]
  4. Microb Ecol. 2011 May;61(4):821-31 [PMID: 21243351]
  5. Infect Immun. 2010 Apr;78(4):1509-19 [PMID: 20145094]
  6. FEMS Microbiol Ecol. 2011 Nov;78(2):244-55 [PMID: 21671963]
  7. Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 [PMID: 19004872]
  8. Int J Syst Evol Microbiol. 2007 Jul;57(Pt 7):1453-1455 [PMID: 17625174]
  9. BMC Biol. 2010 Aug 26;8:109 [PMID: 20796277]
  10. Can J Microbiol. 2005 Jun;51(6):441-6 [PMID: 16121221]
  11. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  12. Proc Biol Sci. 2011 Jun 22;278(1713):1814-22 [PMID: 21106596]
  13. FEMS Microbiol Lett. 2004 Oct 15;239(2):319-23 [PMID: 15476982]
  14. Antonie Van Leeuwenhoek. 2009 Oct;96(3):331-42 [PMID: 19449210]
  15. Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17611-2 [PMID: 19826091]
  16. Microbiol Res. 2011 Jan 20;166(1):68-76 [PMID: 20171857]
  17. Mol Ecol. 2005 Oct;14(11):3597-604 [PMID: 16156826]
  18. Science. 2009 Nov 20;326(5956):1120-3 [PMID: 19965433]
  19. Appl Environ Microbiol. 2009 Aug;75(16):5428-33 [PMID: 19561189]
  20. Int J Syst Bacteriol. 1996 Jan;46(1):112-5 [PMID: 8573485]
  21. Genome Res. 2009 Jul;19(7):1141-52 [PMID: 19383763]
  22. Mol Ecol. 2010 Dec;19(24):5555-65 [PMID: 21050295]
  23. PLoS Genet. 2010 Sep 23;6(9):e1001129 [PMID: 20885794]
  24. Evolution. 2008 May;62(5):1252-7 [PMID: 18266984]
  25. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7998-8002 [PMID: 10393936]
  26. Science. 2010 Jul 9;329(5988):212-5 [PMID: 20616278]
  27. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  28. ISME J. 2010 Jan;4(1):17-27 [PMID: 19710709]
  29. Mol Ecol. 2008 Oct;17(20):4480-8 [PMID: 18986494]
  30. Genome Res. 2002 Oct;12(10):1611-8 [PMID: 12368254]
  31. Environ Entomol. 2009 Feb;38(1):78-92 [PMID: 19791600]
  32. Q Rev Biol. 2004 Jun;79(2):135-60 [PMID: 15232949]
  33. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4742-6 [PMID: 19270078]
  34. Poult Sci. 2009 Feb;88(2):298-302 [PMID: 19151343]
  35. Biol Lett. 2009 Aug 23;5(4):446-8 [PMID: 19411266]
  36. BMC Microbiol. 2008 Mar 06;8:43 [PMID: 18325110]
  37. PLoS One. 2009 Dec 14;4(12):e8230 [PMID: 20011594]
  38. Biol Lett. 2012 Jun 23;8(3):461-4 [PMID: 22130174]
  39. J Ind Microbiol Biotechnol. 2009 Nov;36(11):1425-34 [PMID: 19697072]
  40. PLoS One. 2007 Sep 26;2(9):e960 [PMID: 17896000]
  41. BMC Med Genomics. 2010 Sep 21;3:41 [PMID: 20854691]
  42. Int J Syst Evol Microbiol. 2009 Jan;59(Pt 1):87-94 [PMID: 19126730]
  43. Antonie Van Leeuwenhoek. 2010 Aug;98(2):195-212 [PMID: 20333466]
  44. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  45. Naturwissenschaften. 2007 Oct;94(10):821-8 [PMID: 17541536]
  46. Trends Ecol Evol. 2011 Apr;26(4):202-9 [PMID: 21371775]
  47. Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17805-10 [PMID: 19805175]
  48. J Med Microbiol. 2007 Sep;56(Pt 9):1235-1242 [PMID: 17761489]
  49. Science. 2006 Jan 6;311(5757):81-3 [PMID: 16400148]
  50. Commun Integr Biol. 2011 Jan;4(1):41-3 [PMID: 21509175]
  51. Appl Environ Microbiol. 2011 Jan;77(1):346-50 [PMID: 21075876]
  52. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1955-60 [PMID: 21245311]
  53. Int J Syst Evol Microbiol. 2003 Mar;53(Pt 2):485-490 [PMID: 12710617]

MeSH Term

Animals
Ants
Biodiversity
Computational Biology
Female
Male
Metagenome
RNA, Ribosomal, 16S
Seasons
Sequence Analysis, DNA
Symbiosis

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0antPseudonocardiaantsgardensseptentrionalisdiseasesincludingmicrobialfungus-growingTrachymyrmex454-sequencinglateEscovopsisFungus-growingemployseveraldefensesdisease-suppressingbiofilmsintegumentfungalcomparephenologymicrobiomesnaturalneststemperateusingculture-dependentisolationsculture-independent16S-ampliconrevealeddiverseactinobacteriaassociatedprominentlySolirubrobacter122-309%sequencereads35-420%Microlunatus04-108%BacterialabundancesremainedrelativelyconstantmonthlysurveysthroughoutannualactiveperiodwintersummerexceptabundancedeclinedfemalesreproductivephasespeciesfoundphylogeneticallydifferentsoilindicatingecologicalseparationtypespathogenknowninfectTant-associatedmicrobesseemfunctionsuppressionprotecthelpnestsanitationserveunknownfunctionsMicrobiomescastesimplicatenewroles

Similar Articles

Cited By