Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells.

C Sanges, C Scheuermann, R P Zahedi, A Sickmann, A Lamberti, N Migliaccio, A Baljuls, M Marra, S Zappavigna, J Reinders, U Rapp, A Abbruzzese, M Caraglia, P Arcari
Author Information
  1. C Sanges: Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Naples, Italy.

Abstract

We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B- and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.

References

  1. J Biol Chem. 1989 Apr 5;264(10):5791-8 [PMID: 2564392]
  2. Zoolog Sci. 1996 Jun;13(3):371-5 [PMID: 9019273]
  3. Nature. 1997 Sep 25;389(6649):403-6 [PMID: 9311785]
  4. J Biol Chem. 2002 Feb 15;277(7):5418-25 [PMID: 11724805]
  5. Genomics. 1996 Sep 1;36(2):359-61 [PMID: 8812466]
  6. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W310-4 [PMID: 16845016]
  7. Proteins. 2005 Aug 1;60(2):296-301 [PMID: 15981259]
  8. Mol Cell. 2000 Nov;6(5):1261-6 [PMID: 11106763]
  9. Curr Protein Pept Sci. 2004 Dec;5(6):475-85 [PMID: 15581417]
  10. Oncogene. 1997 Aug 28;15(9):1021-33 [PMID: 9285556]
  11. J Biochem. 2006 Sep;140(3):393-9 [PMID: 16877446]
  12. J Biol Chem. 1951 Nov;193(1):265-75 [PMID: 14907713]
  13. Trends Biochem Sci. 2003 Aug;28(8):434-41 [PMID: 12932732]
  14. J Biol Chem. 1992 Nov 25;267(33):24064-8 [PMID: 1385435]
  15. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2199-204 [PMID: 17287340]
  16. Electrophoresis. 1994 Mar-Apr;15(3-4):544-54 [PMID: 8055882]
  17. Mol Gen Genet. 1989 Oct;219(1-2):106-12 [PMID: 2615757]
  18. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  19. Nat Struct Mol Biol. 2005 Sep;12(9):772-8 [PMID: 16116436]
  20. J Proteome Res. 2009 Aug;8(8):3852-61 [PMID: 19534553]
  21. Eur J Biochem. 2002 Nov;269(22):5360-8 [PMID: 12423334]
  22. Mol Cell. 2007 Dec 14;28(5):721-9 [PMID: 18082597]
  23. Cell Death Differ. 2007 May;14(5):952-62 [PMID: 17332776]
  24. Cell. 2007 Dec 14;131(6):1190-203 [PMID: 18083107]
  25. Exp Cell Res. 1998 Jan 10;238(1):168-76 [PMID: 9457069]
  26. J Biol Chem. 1995 Mar 17;270(11):6156-62 [PMID: 7890750]
  27. Biochim Biophys Acta. 1994 Apr 6;1217(3):333-7 [PMID: 8148382]
  28. Cell. 1989 Aug 25;58(4):649-57 [PMID: 2475255]
  29. EMBO J. 1999 Jul 1;18(13):3800-7 [PMID: 10393195]
  30. Biosci Biotechnol Biochem. 2002 Jan;66(1):1-21 [PMID: 11866090]
  31. Oncogene. 2008 Feb 7;27(7):877-95 [PMID: 17724477]
  32. Nat Biotechnol. 2005 Jan;23(1):94-101 [PMID: 15592455]
  33. Bioinformatics. 2006 Jan 15;22(2):195-201 [PMID: 16301204]
  34. J Biol Chem. 1999 Oct 15;274(42):30297-302 [PMID: 10514524]
  35. Ann N Y Acad Sci. 2009 Aug;1171:87-93 [PMID: 19723040]
  36. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4463-8 [PMID: 9539760]
  37. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1814-8 [PMID: 3104905]
  38. Prog Nucleic Acid Res Mol Biol. 1998;60:47-78 [PMID: 9594571]
  39. Int J Biochem Cell Biol. 2008;40(1):63-71 [PMID: 17936057]
  40. Genetics. 2006 Oct;174(2):651-63 [PMID: 16951075]
  41. Anal Chem. 1996 Mar 1;68(5):850-8 [PMID: 8779443]
  42. Biochim Biophys Acta. 1998 Nov 26;1443(1-2):1-22 [PMID: 9838020]
  43. Biochemistry. 2000 Dec 19;39(50):15531-9 [PMID: 11112539]
  44. Mol Cell Proteomics. 2007 Nov;6(11):1896-906 [PMID: 17761666]
  45. Eur J Biochem. 1993 Aug 1;215(3):549-54 [PMID: 8354261]
  46. J Biol Chem. 2007 Sep 28;282(39):28951-28959 [PMID: 17640869]
  47. Mol Cell Proteomics. 2010 Dec;9(12):2719-28 [PMID: 20923971]
  48. Sci Signal. 2009 Aug 18;2(84):ra46 [PMID: 19690332]
  49. BMC Cancer. 2005 Sep 12;5:113 [PMID: 16156888]
  50. J Proteome Res. 2008 Feb;7(2):526-34 [PMID: 18088087]

MeSH Term

Animals
Apoptosis
COS Cells
Chlorocebus aethiops
Gene Expression Regulation
Humans
Models, Molecular
Mutation
Peptide Elongation Factor 1
Phosphoproteins
Phosphorylation
Protein Binding
Protein Multimerization
Protein Stability
Protein Structure, Tertiary
Proto-Oncogene Proteins B-raf
Proto-Oncogene Proteins c-raf
Recombinant Proteins
Signal Transduction
Transfection

Chemicals

EEF1A1 protein, human
EEF1A2 protein, human
Peptide Elongation Factor 1
Phosphoproteins
Recombinant Proteins
BRAF protein, human
Proto-Oncogene Proteins B-raf
Proto-Oncogene Proteins c-raf

Word Cloud

Created with Highcharts 10.0.0eEF1AS21cellsphosphorylationC-RafeukaryoticapoptosiseEF1A1isoformsidentifiedtranslationelongationfactor1ARaf-mediatedsitesroleregulationT88eEF1A2COS7wtmutantsS21A/Ddefinedhalf-lifehumancancerMassspectrometryvitromediatedB-RafwhereasphosphorylatedB-InterestinglybelongsfirstGTP/GDP-bindingconsensussequencePhosphorylationstronglyenhancedpreincubatedpriorassaysuggestingcanheterodimerizethusincreasingaccessibilityphosphateOverexpressionconfirmedalsovivoComparedoverexpressedphosphodeficientphospho-mimickingDT88A/DresultedlessstablerapidlyproteasomedegradedTransfectionA/DH1355increasedcomparisonindicatesblockageinterferesevensupportsinducedrathercellsurvivalsitecrucialmechanisminvolvedfunctionalswitchingproteinbiosynthesisparticipationcellularprocessesRafkinasesmediateregulatestability

Similar Articles

Cited By