Online coupling of digital microfluidic devices with mass spectrometry detection using an eductor with electrospray ionization.

Christopher A Baker, Michael G Roper
Author Information
  1. Christopher A Baker: Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.

Abstract

MS detection coupled with digital microfluidic (DMF) devices has most commonly been demonstrated in an offline manner using matrix assisted laser desorption ionization. In this work, an eductor is demonstrated which facilitated online coupling of DMF with electrospray ionization MS detection. The eductor consisted of a transfer capillary, a standard ESI needle, and a tapered gas nozzle. As a pulse of N(2) was applied to the nozzle, a pressure differential was induced at the outlet of the ESI needle that pulled droplets from the DMF, past the ESI needle, and into the flow of gas exiting the nozzle, allowing detection by MS. Operating position, ionization potential, and N(2) pressure were optimized, with the optimum ionization potential and N(2) pressure found to be 3206 V and 80 psi, respectively. Online MS detection was demonstrated from both open and closed DMF devices using 2.5 μL and 630 nL aqueous droplets, respectively. Relative quantitation by DMF-MS was demonstrated by mixing droplets of caffeine with droplets of theophylline on an open DMF device and comparing the peak area ratio obtained to an on-chip generated calibration curve. This eductor-based method for transferring droplets has the potential for rapid, versatile, and high-throughput microfluidic analyses.

References

  1. Lab Chip. 2008 Feb;8(2):198-220 [PMID: 18231657]
  2. Anal Bioanal Chem. 2009 May;394(1):313-9 [PMID: 19189083]
  3. Lab Chip. 2011 Feb 7;11(3):535-40 [PMID: 21038034]
  4. J Am Soc Mass Spectrom. 2011 Jul;22(7):1234-41 [PMID: 21953106]
  5. Anal Chem. 2009 Jun 1;81(11):4524-30 [PMID: 19476392]
  6. Angew Chem Int Ed Engl. 2006 Nov 13;45(44):7336-56 [PMID: 17086584]
  7. Lab Chip. 2011 Oct 7;11(19):3218-24 [PMID: 21869989]
  8. J Chromatogr A. 2010 Jul 9;1217(28):4743-8 [PMID: 20730040]
  9. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16843-8 [PMID: 18974218]
  10. Anal Bioanal Chem. 2011 Jan;399(1):337-45 [PMID: 21057776]
  11. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8721-6 [PMID: 12851459]
  12. Chem Commun (Camb). 2007 Mar 28;(12):1218-20 [PMID: 17356761]
  13. Lab Chip. 2009 Apr 7;9(7):901-9 [PMID: 19294300]
  14. Anal Chem. 2009 Nov 1;81(21):9086-95 [PMID: 19874061]
  15. Anal Chem. 2005 Apr 15;77(8):2297-302 [PMID: 15828760]
  16. Angew Chem Int Ed Engl. 2009;48(20):3665-8 [PMID: 19353614]
  17. Anal Chem. 2004 Aug 15;76(16):4833-8 [PMID: 15307795]
  18. J Am Chem Soc. 2003 Nov 26;125(47):14613-9 [PMID: 14624612]
  19. Anal Chem. 2005 Jan 15;77(2):534-40 [PMID: 15649050]
  20. Lab Chip. 2002 May;2(2):96-101 [PMID: 15100841]
  21. Water Res. 2005 Sep;39(14):3409-17 [PMID: 16023699]
  22. Anal Chem. 2007 Nov 15;79(22):8471-5 [PMID: 17929880]
  23. J Mass Spectrom. 2005 Oct;40(10):1261-75 [PMID: 16237663]
  24. Anal Chem. 2009 Aug 1;81(15):6558-61 [PMID: 19555052]
  25. Anal Chem. 2003 Oct 1;75(19):5097-5102 [PMID: 27669630]
  26. Anal Chem. 2008 Mar 1;80(5):1614-9 [PMID: 18220413]
  27. Langmuir. 2008 Jun 17;24(12):6382-9 [PMID: 18481875]

Grants

  1. R01 DK080714/NIDDK NIH HHS
  2. R01 DK080714-05/NIDDK NIH HHS

MeSH Term

Analysis of Variance
Caffeine
Equipment Design
Microfluidic Analytical Techniques
Spectrometry, Mass, Electrospray Ionization
Theophylline

Chemicals

Caffeine
Theophylline

Word Cloud

Created with Highcharts 10.0.0detectionDMFionizationdropletsMSdemonstrated2microfluidicdevicesusingeductorESIneedlenozzleNpressurepotentialdigitalcouplingelectrospraygasrespectivelyOnlineopencoupledcommonlyofflinemannermatrixassistedlaserdesorptionworkfacilitatedonlineconsistedtransfercapillarystandardtaperedpulseapplieddifferentialinducedoutletpulledpastflowexitingallowingOperatingpositionoptimizedoptimumfound3206V80psiclosed5μL630nLaqueousRelativequantitationDMF-MSmixingcaffeinetheophyllinedevicecomparingpeakarearatioobtainedon-chipgeneratedcalibrationcurveeductor-basedmethodtransferringrapidversatilehigh-throughputanalysesmassspectrometry

Similar Articles

Cited By