Evolutionary game dynamics in populations with different learners.

Krishnendu Chatterjee, Damien Zufferey, Martin A Nowak
Author Information
  1. Krishnendu Chatterjee: IST Austria-Institute of Science and Technology Austria, Austria. krishnendu.chatterjee@ist.ac.at

Abstract

We study evolutionary game theory in a setting where individuals learn from each other. We extend the traditional approach by assuming that a population contains individuals with different learning abilities. In particular, we explore the situation where individuals have different search spaces, when attempting to learn the strategies of others. The search space of an individual specifies the set of strategies learnable by that individual. The search space is genetically given and does not change under social evolutionary dynamics. We introduce a general framework and study a specific example in the context of direct reciprocity. For this example, we obtain the counter intuitive result that cooperation can only evolve for intermediate benefit-to-cost ratios, while small and large benefit-to-cost ratios favor defection. Our paper is a step toward making a connection between computational learning theory and evolutionary game dynamics.

References

  1. J Theor Biol. 1989 Jan 9;136(1):47-56 [PMID: 2779259]
  2. J Theor Biol. 2010 Nov 7;267(1):22-8 [PMID: 20708018]
  3. Nature. 1987 Jan 29-Feb 4;325(6103):433-5 [PMID: 3808044]
  4. J Theor Biol. 1979 Dec 7;81(3):609-12 [PMID: 537389]
  5. Nature. 2010 Aug 12;466(7308):861-3 [PMID: 20631710]
  6. Philos Trans R Soc Lond B Biol Sci. 2010 Sep 12;365(1553):2627-33 [PMID: 20679107]
  7. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):709-12 [PMID: 19124771]
  8. J Theor Biol. 2010 May 7;264(1):104-18 [PMID: 20093123]
  9. Science. 2001 Jan 5;291(5501):114-8 [PMID: 11141560]
  10. Science. 2004 Feb 6;303(5659):793-9 [PMID: 14764867]
  11. Bull Math Biol. 2003 Jan;65(1):67-93 [PMID: 12597117]
  12. J Theor Biol. 2004 Sep 21;230(2):227-39 [PMID: 15302554]
  13. Nature. 1993 Jul 1;364(6432):56-8 [PMID: 8316296]
  14. J Theor Biol. 1989 Mar 7;137(1):21-6 [PMID: 2593672]
  15. Nature. 2004 Apr 15;428(6984):745-8 [PMID: 15085131]
  16. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8601-4 [PMID: 19433793]
  17. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10797-800 [PMID: 16043717]
  18. Bull Math Biol. 2007 Apr;69(3):1093-118 [PMID: 17265122]
  19. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5091-4 [PMID: 8506355]
  20. Nature. 2002 Jun 6;417(6889):611-7 [PMID: 12050656]
  21. Monogr Popul Biol. 1981;16:1-388 [PMID: 7300842]

Grants

  1. R01 GM078986/NIGMS NIH HHS
  2. R01 GM078986-04/NIGMS NIH HHS
  3. R01GM078986/NIGMS NIH HHS

MeSH Term

Biological Evolution
Cooperative Behavior
Game Theory
Humans
Learning
Models, Genetic
Models, Psychological
Mutation

Word Cloud

Created with Highcharts 10.0.0evolutionarygameindividualsdifferentsearchdynamicsstudytheorylearnlearningstrategiesspaceindividualexamplebenefit-to-costratiossettingextendtraditionalapproachassumingpopulationcontainsabilitiesparticularexploresituationspacesattemptingothersspecifiessetlearnablegeneticallygivenchangesocialintroducegeneralframeworkspecificcontextdirectreciprocityobtaincounterintuitiveresultcooperationcanevolveintermediatesmalllargefavordefectionpapersteptowardmakingconnectioncomputationalEvolutionarypopulationslearners

Similar Articles

Cited By