A comparison of low- and high-impact forced exercise: effects of training paradigm on learning and memory.

John A Kennard, Diana S Woodruff-Pak
Author Information
  1. John A Kennard: Department of Psychology, Temple University, 1701 North 13th Street, Philadelphia, PA 19122, USA.

Abstract

In this study we compared two types of forced exercise-a low impact paradigm to minimize stress, which included speeds up to 10 m/min and a stressful high impact paradigm, with speeds up to 21 m/min. 150 male C57BL/6J mice were randomly assigned to the low impact, high impact, or sedentary control conditions and were tested on the rotorod and Morris water maze (MWM) as indices of motor learning and spatial memory. We found that 5 weeks of stressful high speed forced exercise led to significant improvement in rotorod performance, as high impact runners outperformed both low impact runners and controls at 15 and 25 rpm speeds. These differences were the result of improved physical fitness due to exercise and likely do not reflect enhanced learning in these mice. In the MWM, 5 weeks of stressful high impact exercise led to significant impairment in spatial memory acquisition compared to low impact runners and controls. Low impact exercise for 10 weeks significantly improved retention of spatial memory compared to high impact exercise. Results suggested that these two paradigms produced different effects of forced exercise on learning and memory. The low impact paradigm led to some improvements, whereas the stressful high impact program caused significant impairment. Comparison of these two paradigms begins to address the window between the beneficial and detrimental effects of forced exercise, and have suggested a boundary of exercise intensity that leads to impairment in learning.

References

  1. Neurobiol Learn Mem. 1996 Sep;66(2):221-9 [PMID: 8946414]
  2. Brain Res. 2006 Oct 3;1113(1):186-93 [PMID: 16904660]
  3. J Physiol. 2009 Jul 1;587(Pt 13):3221-31 [PMID: 19451201]
  4. Brain Behav Immun. 2006 Mar;20(2):139-43 [PMID: 16112839]
  5. Neuroscience. 1995 Nov;69(1):89-98 [PMID: 8637636]
  6. Am J Physiol. 1997 Dec;273(6):R1957-64 [PMID: 9435649]
  7. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5568-72 [PMID: 1695380]
  8. Neurosci Lett. 2005 Aug 5;383(3):241-5 [PMID: 15878799]
  9. Brain Res. 1994 Mar 7;639(1):167-70 [PMID: 8180832]
  10. J Neural Transm (Vienna). 2006 Jul;113(7):803-11 [PMID: 16252072]
  11. Behav Neurosci. 2007 Apr;121(2):324-34 [PMID: 17469921]
  12. Physiol Behav. 2000 Sep 15;70(5):425-9 [PMID: 11110995]
  13. Physiol Behav. 1998 Jan;63(2):279-85 [PMID: 9423970]
  14. Brain Res. 1992 Aug 21;588(2):341-5 [PMID: 1393587]
  15. Neuron. 2009 Oct 15;64(1):33-9 [PMID: 19840546]
  16. Behav Neurosci. 1996 Dec;110(6):1321-34 [PMID: 8986335]
  17. J Gerontol A Biol Sci Med Sci. 2006 Nov;61(11):1166-70 [PMID: 17167157]
  18. Behav Brain Res. 2009 Mar 2;198(1):247-51 [PMID: 18996418]
  19. Am J Physiol. 1998 Dec;275(6):L1089-94 [PMID: 9843845]
  20. Brain Res. 1993 Aug 13;619(1-2):111-9 [PMID: 8374769]
  21. Health Psychol. 2012 Mar;31(2):145-55 [PMID: 21895371]
  22. J Cereb Blood Flow Metab. 1992 Jan;12(1):110-9 [PMID: 1370068]
  23. Neuroscience. 2008 Oct 15;156(3):456-65 [PMID: 18721864]
  24. Neurobiol Learn Mem. 2004 May;81(3):211-6 [PMID: 15082022]
  25. Hippocampus. 2006;16(3):250-60 [PMID: 16411242]
  26. Stress. 1996 Jul;1(1):1-19 [PMID: 9807058]
  27. Nature. 1968 Nov 30;220(5170):911-2 [PMID: 4301849]
  28. Annu Rev Neurosci. 2009;32:289-313 [PMID: 19400714]
  29. Physiol Behav. 2006 Nov 30;89(4):582-6 [PMID: 16945396]
  30. Nature. 1997 Apr 3;386(6624):493-5 [PMID: 9087407]
  31. Hum Psychopharmacol. 2001 Jan;16(S1):S7-S19 [PMID: 12404531]
  32. Educ Psychol Rev. 2008 Jun 1;20(2):111-131 [PMID: 19777141]
  33. Neuroscience. 2010 Nov 24;171(1):214-26 [PMID: 20804819]
  34. Biochem Pharmacol. 1990 Dec 1;40(11):2393-402 [PMID: 2268363]
  35. Brain Behav Immun. 2008 Feb;22(2):195-9 [PMID: 17720362]
  36. Nature. 1999 Jul 29;400(6743):418-9 [PMID: 10440369]
  37. J Neurosci. 2005 Sep 21;25(38):8680-5 [PMID: 16177036]
  38. Med Sci Sports Exerc. 2007 Aug;39(8):1423-34 [PMID: 17762377]
  39. Behav Brain Res. 2007 Mar 28;178(2):244-9 [PMID: 17257689]

Grants

  1. R01 AG023742/NIA NIH HHS
  2. 1 R01 AG021925/NIA NIH HHS
  3. R01 AG023742-05/NIA NIH HHS
  4. R01 AG021925/NIA NIH HHS
  5. 1 R01 AG023742/NIA NIH HHS

MeSH Term

Analysis of Variance
Animals
Cerebellum
Endocrine System
Immunity
Learning
Male
Maze Learning
Memory
Mice
Mice, Inbred C57BL
Physical Conditioning, Animal
Postural Balance
Running
Swimming

Word Cloud

Created with Highcharts 10.0.0impactexercisehighforcedlowlearningmemoryparadigmstressfulcomparedtwospeedsspatialweeksledsignificantrunnersimpairmenteffects10m/minmicerotorodMWM5controlsimprovedsuggestedparadigmsstudytypesexercise-aminimizestressincluded21150maleC57BL/6JrandomlyassignedsedentarycontrolconditionstestedMorriswatermazeindicesmotorfoundspeedimprovementperformanceoutperformed1525rpmdifferencesresultphysicalfitnessduelikelyreflectenhancedacquisitionLowsignificantlyretentionResultsproduceddifferentimprovementswhereasprogramcausedComparisonbeginsaddresswindowbeneficialdetrimentalboundaryintensityleadscomparisonlow-high-impactexercise:training

Similar Articles

Cited By