Finding biomarkers is getting easier.

Brian Patrick Bradley
Author Information
  1. Brian Patrick Bradley: Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA. bbradley@umbc.edu

Abstract

Single biomarkers are rarely accurate. Even suites of biomarkers can give conflicting results. Ideally potent combinations of variables are isolated which accurately identify specific analytes and their level of toxicity. The search for such combinations can be done by reducing the thousands of candidate variables to the small number necessary for treatment classification. When the key variables are recognized by machine learning (ML) the results are quite surprising, given the apparent failure of other searching methods to produce good diagnostics. Proteins seem especially useful for portable field tests of a variety of adverse conditions. This review shows how ML, in particular artificial neural networks, can find potent biomarkers embedded in any type of expression data, mainly proteins in this article. A computer does multiple iterations to produce sets of proteins which systematically identify (to near 100% accuracy) the treatment classes of interest. Whether these proteins are useful in actual diagnoses is tested by presenting the computer model with unknown classes. Finding the biomarkers is getting easier but there still must be confirmation, by multivariable statistics and with field studies.

References

  1. Ecotoxicology. 2009 Oct;18(7):784-90 [PMID: 19562483]
  2. BMC Bioinformatics. 2003 Apr 10;4:13 [PMID: 12697066]
  3. Nature. 2003 Mar 13;422(6928):198-207 [PMID: 12634793]
  4. Expert Rev Proteomics. 2008 Feb;5(1):21-3 [PMID: 18282120]
  5. Proteomics. 2006 Dec;6(24):6498-507 [PMID: 17163441]
  6. Anal Chim Acta. 2007 Jun 5;592(2):210-7 [PMID: 17512828]
  7. Ecotoxicology. 2004 Jul;13(5):423-36 [PMID: 15462134]
  8. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5923-8 [PMID: 16585533]
  9. J Comp Physiol B. 1996;166(2):88-100 [PMID: 8766907]
  10. Mar Environ Res. 2002 Sep-Dec;54(3-5):373-7 [PMID: 12408590]
  11. Ecotoxicology. 2004 Jul;13(5):463-74 [PMID: 15462137]
  12. Aquat Toxicol. 2004 Apr 14;67(2):143-54 [PMID: 15003699]
  13. Proteomics. 2006 Dec;6(24):6509-27 [PMID: 17163438]
  14. Proteomics. 2006 Sep;6 Suppl 2:48-55 [PMID: 17031797]
  15. Mar Environ Res. 2000 Jul-Dec;50(1-5):337-40 [PMID: 11460714]
  16. Bioinformatics. 2002 Mar;18(3):395-404 [PMID: 11934738]
  17. Reprod Toxicol. 2005 Jan-Feb;19(3):321-6 [PMID: 15686867]
  18. Proteomics. 2007 Mar;7(5):781-95 [PMID: 17295351]
  19. Environ Sci Technol. 2006 Jul 1;40(13):4055-65 [PMID: 16856717]
  20. J Proteome Res. 2005 Nov-Dec;4(6):2201-6 [PMID: 16335967]
  21. Proteomics. 2007 Apr;7(8):1197-207 [PMID: 17366473]
  22. Ecotoxicology. 2007 Feb;16(1):231-8 [PMID: 17219089]
  23. Brief Bioinform. 2008 Mar;9(2):102-18 [PMID: 18310106]
  24. Methods Mol Biol. 2009;519:455-68 [PMID: 19381602]
  25. Annu Rev Biophys Biomol Struct. 2003;32:399-424 [PMID: 12574065]
  26. Ecotoxicology. 1992 Sep;1(1):3-16 [PMID: 24202850]
  27. Brief Funct Genomic Proteomic. 2003 Oct;2(3):185-93 [PMID: 15239922]
  28. Ecotoxicology. 2003 Dec;12(6):485-8 [PMID: 14680328]
  29. J Proteome Res. 2006 Mar;5(3):461-2 [PMID: 16541529]
  30. Ecotoxicology. 2004 Jul;13(5):485-92 [PMID: 15462139]
  31. J Clin Oncol. 2002 Feb 15;20(4):921-9 [PMID: 11844812]
  32. BMC Bioinformatics. 2004 Mar 11;5:26 [PMID: 15113409]
  33. Anal Chem. 1983 Dec;55(14):2340-4 [PMID: 6660527]
  34. Ecotoxicology. 2004 Jul;13(5):475-84 [PMID: 15462138]
  35. Proteomics. 2006 Oct;6(20):5577-96 [PMID: 16991202]
  36. Appl Environ Microbiol. 1992 Jan;58(1):331-4 [PMID: 1539981]

MeSH Term

Biomarkers
Data Mining
Databases, Protein
Neural Networks, Computer
Reproducibility of Results
Xenobiotics

Chemicals

Biomarkers
Xenobiotics

Word Cloud

Created with Highcharts 10.0.0biomarkerscanvariablesproteinsresultspotentcombinationsidentifytreatmentMLproduceusefulfieldcomputerclassesFindinggettingeasierSinglerarelyaccurateEvensuitesgiveconflictingIdeallyisolatedaccuratelyspecificanalytesleveltoxicitysearchdonereducingthousandscandidatesmallnumbernecessaryclassificationkeyrecognizedmachinelearningquitesurprisinggivenapparentfailuresearchingmethodsgooddiagnosticsProteinsseemespeciallyportabletestsvarietyadverseconditionsreviewshowsparticularartificialneuralnetworksfindembeddedtypeexpressiondatamainlyarticlemultipleiterationssetssystematicallynear100%accuracyinterestWhetheractualdiagnosestestedpresentingmodelunknownstillmustconfirmationmultivariablestatisticsstudies

Similar Articles

Cited By