Related transcriptional enhancer factor 1 increases endothelial-dependent microvascular relaxation and proliferation.

Angela F Messmer-Blust, Cuili Zhang, Jue-Lon Shie, Qinhui Song, Ping He, Isabel Lubenec, Yuhong Liu, Frank Sellke, Jian Li
Author Information
  1. Angela F Messmer-Blust: Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.

Abstract

OBJECTIVE: Related transcriptional enhancer factor 1 (RTEF-1) is a key transcriptional regulator in endothelial function. In this study, we investigated a possible role for RTEF-1 in the regulation of microvascular relaxation and the underlying mechanism involved. Activation of fibroblast growth factor receptor 1 (FGFR1) by FGFs increases vasodilation, although transcriptional control of the molecular mechanisms underlying FGFR1 is still unclear.
MATERIALS AND METHODS: We demonstrated that RTEF-1 stimulated FGFR1 expression at the transcriptional level, specifically an area including Sp1 elements, as evidenced by promoter assays. Additionally, RTEF-1 increased FGFR1 mRNA and protein expression in vitro and in VE-cadherin-promoted RTEF-1 (VE-Cad/RTEF-1) transgenic mice, whereas RTEF-1 siRNA blocked the upregulation of FGFR1 expression. Furthermore, increased endothelial-dependent microvessel relaxation was observed in the coronary arteries of VE-Cad/RTEF-1 mice, and increased proliferation was observed in RTEF-1-overexpressing cells, both of which correlated to increased FGF/FGFR1 signaling and endothelial nitric oxide synthase (eNOS) upregulation. Our results indicate that RTEF-1 acts as a transcriptional stimulator of FGFR1 and is involved in FGF pathways by increasing microvessel dilatation via eNOS.
CONCLUSIONS: These findings suggest that RTEF-1 plays an important role in FGFR1- stimulated vasodilatation. Understanding the effect of RTEF-1 in microvessel relaxation may provide beneficial knowledge in improving treatments in regards to ischemic vascular disorders.

References

  1. Circulation. 2004 Nov 9;110(19):2980-7 [PMID: 15520314]
  2. Blood. 1999 Jan 1;93(1):184-92 [PMID: 9864160]
  3. Am J Physiol. 1996 Aug;271(2 Pt 2):H713-20 [PMID: 8770115]
  4. Cytokine Growth Factor Rev. 2005 Apr;16(2):159-78 [PMID: 15863032]
  5. J Biol Chem. 1996 Apr 5;271(14):8266-74 [PMID: 8626521]
  6. Microvasc Res. 2002 Jul;64(1):38-46 [PMID: 12074629]
  7. Clin Endocrinol (Oxf). 2003 Feb;58(2):141-50 [PMID: 12580928]
  8. Am J Physiol Heart Circ Physiol. 2003 Sep;285(3):H1190-7 [PMID: 12763749]
  9. J Biol Chem. 2004 Jun 11;279(24):25010-6 [PMID: 15073166]
  10. Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3775-82 [PMID: 17652751]
  11. Dev Dyn. 2001 Jan;220(1):1-17 [PMID: 11146503]
  12. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2292-6 [PMID: 3470794]
  13. Biochem Biophys Res Commun. 2002 Sep 6;296(5):1279-85 [PMID: 12207913]
  14. Biochem J. 2005 May 15;388(Pt 1):217-25 [PMID: 15628970]
  15. Eur J Cardiothorac Surg. 2008 Apr;33(4):645-50; discussion 251-2 [PMID: 18201892]
  16. Cardiovasc Res. 2011 May 1;90(2):325-34 [PMID: 21169295]
  17. Circ Res. 1992 Nov;71(5):1088-100 [PMID: 1327576]
  18. Development. 1997 Jul;124(14):2829-41 [PMID: 9226454]
  19. BioDrugs. 2000 Jul;14(1):13-20 [PMID: 18034552]
  20. Circ Res. 2007 Oct 26;101(9):883-92 [PMID: 17823374]
  21. J Am Coll Cardiol. 1993 Dec;22(7):2001-6 [PMID: 7504006]
  22. Circ Res. 2003 Sep 5;93(5):414-20 [PMID: 12893744]
  23. J Biol Chem. 2002 Jul 5;277(27):24346-52 [PMID: 11986313]
  24. Am J Physiol. 1992 Jun;262(6 Pt 2):H1838-45 [PMID: 1621842]
  25. Circulation. 2005 Aug 30;112(9 Suppl):I190-5 [PMID: 16159814]

Grants

  1. R01 HL069024/NHLBI NIH HHS
  2. R01HL082837/NHLBI NIH HHS
  3. T32 HL007374/NHLBI NIH HHS
  4. T32HL007374/NHLBI NIH HHS
  5. R01HL69024/NHLBI NIH HHS
  6. R01 HL082837/NHLBI NIH HHS

MeSH Term

Animals
Cattle
Cell Proliferation
Cells, Cultured
DNA-Binding Proteins
Endothelium, Vascular
Humans
Microvessels
Muscle Proteins
Nitric Oxide Synthase Type III
Promoter Regions, Genetic
Receptor, Fibroblast Growth Factor, Type 1
Signal Transduction
TEA Domain Transcription Factors
Transcription Factors
Vasodilation

Chemicals

DNA-Binding Proteins
Muscle Proteins
TEA Domain Transcription Factors
TEAD4 protein, human
Transcription Factors
Nitric Oxide Synthase Type III
FGFR1 protein, human
Receptor, Fibroblast Growth Factor, Type 1

Word Cloud

Created with Highcharts 10.0.0RTEF-1transcriptionalFGFR1relaxationincreasedfactor1expressionmicrovesselRelatedenhancerendothelialrolemicrovascularunderlyinginvolvedincreasesstimulatedVE-Cad/RTEF-1miceupregulationendothelial-dependentobservedproliferationeNOSOBJECTIVE:keyregulatorfunctionstudyinvestigatedpossibleregulationmechanismActivationfibroblastgrowthreceptorFGFsvasodilationalthoughcontrolmolecularmechanismsstillunclearMATERIALSANDMETHODS:demonstratedlevelspecificallyareaincludingSp1elementsevidencedpromoterassaysAdditionallymRNAproteinvitroVE-cadherin-promotedtransgenicwhereassiRNAblockedFurthermorecoronaryarteriesRTEF-1-overexpressingcellscorrelatedFGF/FGFR1signalingnitricoxidesynthaseresultsindicateactsstimulatorFGFpathwaysincreasingdilatationviaCONCLUSIONS:findingssuggestplaysimportantFGFR1-vasodilatationUnderstandingeffectmayprovidebeneficialknowledgeimprovingtreatmentsregardsischemicvasculardisorders

Similar Articles

Cited By