Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Aβ production.

Alessio Vagnoni, Michael S Perkinton, Emma H Gray, Paul T Francis, Wendy Noble, Christopher C J Miller
Author Information
  1. Alessio Vagnoni: KCL Centre for Neurodegeneration Research, Department of Neuroscience, Institute of Psychiatry, King’s College London, De Crespigny Park, London, UK

Abstract

Understanding the mechanisms that control processing of the amyloid precursor protein (APP) to produce amyloid-β (Aβ) peptide represents a key area of Alzheimer's disease research. Here, we show that siRNA-mediated loss of calsyntenin-1 in cultured neurons alters APP processing to increase production of Aβ. We also show that calsyntenin-1 is reduced in Alzheimer's disease brains and that the extent of this reduction correlates with increased Aβ levels. Calsyntenin-1 is a ligand for kinesin-1 light chains and APP is transported through axons on kinesin-1 molecular motors. Defects in axonal transport are an early pathological feature in Alzheimer's disease and defective APP transport is known to increase Aβ production. We show that calsyntenin-1 and APP are co-transported through axons and that siRNA-induced loss of calsyntenin-1 markedly disrupts axonal transport of APP. Thus, perturbation to axonal transport of APP on calsyntenin-1 containing carriers induces alterations to APP processing that increase production of Aβ. Together, our findings suggest that disruption of calsyntenin-1-associated axonal transport of APP is a pathogenic mechanism in Alzheimer's disease.

References

  1. J Neurochem. 2009 Dec;111(6):1501-13 [PMID: 19811606]
  2. Exp Brain Res. 2012 Apr;217(3-4):353-64 [PMID: 21960299]
  3. Science. 2005 Feb 25;307(5713):1282-8 [PMID: 15731448]
  4. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14745-50 [PMID: 9843960]
  5. J Cell Biol. 2003 Oct 13;163(1):83-95 [PMID: 14557249]
  6. J Biol Chem. 1999 Jan 22;274(4):2243-54 [PMID: 9890987]
  7. Mol Cell Biol. 1996 Nov;16(11):6229-41 [PMID: 8887653]
  8. J Biol Chem. 2000 Jan 28;275(4):2568-75 [PMID: 10644715]
  9. J Biol Chem. 2003 Dec 5;278(49):49448-58 [PMID: 12972431]
  10. Annu Rev Biochem. 2006;75:607-27 [PMID: 16756504]
  11. J Cell Biol. 2004 Oct 11;167(1):99-110 [PMID: 15466480]
  12. J Biol Chem. 1994 Jul 1;269(26):17386-9 [PMID: 8021238]
  13. J Biol Chem. 2003 Nov 21;278(47):47025-9 [PMID: 12970358]
  14. Science. 1999 Oct 22;286(5440):735-41 [PMID: 10531052]
  15. J Biol Chem. 2004 Nov 19;279(47):49099-104 [PMID: 15347685]
  16. Biochem J. 2011 Jun 15;436(3):631-9 [PMID: 21486224]
  17. Proteomics. 2010 Nov;10(21):3775-88 [PMID: 20925061]
  18. J Biol Chem. 2003 Sep 19;278(38):36032-40 [PMID: 12842896]
  19. Nat Rev Neurol. 2010 Feb;6(2):99-107 [PMID: 20139999]
  20. Mol Cell Neurosci. 2003 Dec;24(4):851-7 [PMID: 14697653]
  21. Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96 [PMID: 19773780]
  22. J Neurochem. 2007 Jun;101(5):1172-84 [PMID: 17286590]
  23. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9299-304 [PMID: 10922078]
  24. Hum Mol Genet. 2009 Dec 1;18(23):4492-500 [PMID: 19744962]
  25. J Cell Sci. 2011 Apr 1;124(Pt 7):1032-42 [PMID: 21385839]
  26. J Neurosci. 2005 Jun 8;25(23):5533-43 [PMID: 15944381]
  27. Mol Biol Cell. 2006 Aug;17(8):3651-63 [PMID: 16760430]
  28. Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):E559-68 [PMID: 21825135]
  29. Cell. 2011 Oct 28;147(3):615-28 [PMID: 22036569]
  30. J Biol Chem. 2001 Oct 26;276(43):40353-61 [PMID: 11517218]
  31. Mol Biol Cell. 2000 Apr;11(4):1213-24 [PMID: 10749925]
  32. J Cell Sci. 2007 Dec 1;120(Pt 23):4081-91 [PMID: 18032783]
  33. J Neurosci. 2009 Nov 18;29(46):14534-44 [PMID: 19923287]
  34. Traffic. 2009 May;10(5):572-89 [PMID: 19192245]
  35. J Neurosci. 2009 Oct 14;29(41):12776-86 [PMID: 19828789]
  36. Neuron. 2006 Oct 5;52(1):15-31 [PMID: 17015224]
  37. FEBS Lett. 1996 Nov 18;397(2-3):197-200 [PMID: 8955346]
  38. Traffic. 2006 Jul;7(7):873-88 [PMID: 16734669]
  39. Nature. 1992 Sep 24;359(6393):322-5 [PMID: 1383826]
  40. Neuron. 2000 Nov;28(2):449-59 [PMID: 11144355]
  41. J Neurosci. 2008 Dec 31;28(53):14392-400 [PMID: 19118172]
  42. Dev Cell. 2010 Mar 16;18(3):425-36 [PMID: 20230749]
  43. Trends Neurosci. 2006 May;29(5):280-5 [PMID: 16545469]
  44. Neurobiol Dis. 2003 Nov;14(2):194-204 [PMID: 14572442]
  45. J Neurosci. 2009 Mar 18;29(11):3565-78 [PMID: 19295161]
  46. J Cell Biol. 2003 May 12;161(3):489-95 [PMID: 12743103]
  47. J Biol Chem. 2006 Dec 8;281(49):37853-60 [PMID: 17032642]
  48. EMBO J. 2007 Mar 21;26(6):1475-86 [PMID: 17332754]
  49. J Cell Biol. 2005 Nov 21;171(4):615-25 [PMID: 16301330]
  50. Annu Rev Neurosci. 2008;31:151-73 [PMID: 18558852]
  51. J Biol Chem. 2006 Dec 29;281(52):40114-23 [PMID: 17050537]
  52. EMBO J. 2011 Nov 16;30(22):4523-38 [PMID: 21915095]
  53. J Biol Chem. 2008 Oct 31;283(44):29615-9 [PMID: 18650430]
  54. Hum Mol Genet. 2007 Nov 15;16(22):2720-2728 [PMID: 17725983]
  55. J Neurochem. 2001 Jan;76(1):316-20 [PMID: 11146006]
  56. J Biol Chem. 1999 Jul 2;274(27):18851-6 [PMID: 10383380]

Grants

  1. 078662/Wellcome Trust
  2. G0501573/Medical Research Council

MeSH Term

ADAM Proteins
ADAM10 Protein
Alzheimer Disease
Amyloid Precursor Protein Secretases
Amyloid beta-Peptides
Amyloid beta-Protein Precursor
Animals
Aspartic Acid Endopeptidases
Axonal Transport
Axons
Calcium-Binding Proteins
Cells, Cultured
Green Fluorescent Proteins
Kinesins
Membrane Glycoproteins
Presenilin-1
Protein Transport
RNA Interference
RNA, Small Interfering
Rats

Chemicals

Amyloid beta-Peptides
Amyloid beta-Protein Precursor
Calcium-Binding Proteins
Clstn1 protein, rat
Membrane Glycoproteins
Presenilin-1
RNA, Small Interfering
enhanced green fluorescent protein
nicastrin protein
Green Fluorescent Proteins
Amyloid Precursor Protein Secretases
Aspartic Acid Endopeptidases
Bace1 protein, rat
ADAM Proteins
ADAM10 Protein
ADAM10 protein, rat
Kinesins

Word Cloud

Created with Highcharts 10.0.0APPtransportcalsyntenin-1axonalAlzheimer'sdiseaseproductionprocessingshowincreaseamyloidprecursorproteinlossCalsyntenin-1kinesin-1axonsUnderstandingmechanismscontrolproduceamyloid-βpeptiderepresentskeyarearesearchsiRNA-mediatedculturedneuronsaltersalsoreducedbrainsextentreductioncorrelatesincreasedlevelsligandlightchainstransportedmolecularmotorsDefectsearlypathologicalfeaturedefectiveknownco-transportedsiRNA-inducedmarkedlydisruptsThusperturbationcontainingcarriersinducesalterationsTogetherfindingssuggestdisruptioncalsyntenin-1-associatedpathogenicmechanismmediatesregulates

Similar Articles

Cited By