Macrophages and systemic iron homeostasis.

Tomas Ganz
Author Information
  1. Tomas Ganz: Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA. TGanz@mednet.ucla.edu

Abstract

As a principal aspect of their scavenging function, splenic and hepatic macrophages phagocytize and degrade senescent and damaged erythrocytes to recover iron, mainly for the production of hemoglobin in new erythrocytes but also for other carriers and enzymes requiring iron. Splenic red pulp macrophages are specialized for iron recycling with increased expression of proteins for the uptake of hemoglobin, breakdown of heme and the export of iron. In humans, recycling macrophages contribute the majority of the iron flux into extracellular fluid, exceeding the contribution of dietary iron absorption and release of stored iron from hepatocytes. Iron release from macrophages is closely regulated by the interaction of hepcidin, a peptide hormone produced by hepatocytes, with the macrophage iron exporter ferroportin. In addition to their homeostatic role, macrophages employ multiple mechanisms to contain microbial infections by depriving microbes of iron. This review discusses the iron-scavenging function of macrophages in the context of iron homeostasis and host defense.

References

  1. Annu Rev Med. 2011;62:347-60 [PMID: 20887198]
  2. Scand J Gastroenterol. 2001 Aug;36(8):891-5 [PMID: 11495088]
  3. Biochem J. 2008 Apr 1;411(1):123-31 [PMID: 18072938]
  4. J Biol Chem. 2008 Feb 1;283(5):2724-33 [PMID: 18045875]
  5. Eur J Immunol. 2010 Mar;40(3):824-35 [PMID: 20039303]
  6. Haematologica. 2010 Nov;95(11):1801-3 [PMID: 21037324]
  7. Mol Biochem Parasitol. 2006 Oct;149(2):121-7 [PMID: 16797741]
  8. Nat Rev Immunol. 2009 Apr;9(4):259-70 [PMID: 19282852]
  9. IUBMB Life. 2008 Oct;60(10):661-8 [PMID: 18720418]
  10. Science. 2004 Dec 17;306(5704):2090-3 [PMID: 15514116]
  11. Cell Physiol Biochem. 2005;16(1-3):1-8 [PMID: 16121027]
  12. Cell Metab. 2005 Mar;1(3):191-200 [PMID: 16054062]
  13. Blood. 2011 Jan 13;117(2):381-92 [PMID: 20852127]
  14. J Clin Gastroenterol. 2009 Oct;43(9):890-3 [PMID: 19349902]
  15. J Clin Invest. 1999 Jan;103(1):129-35 [PMID: 9884342]
  16. J Clin Invest. 2011 Mar;121(3):985-97 [PMID: 21317534]
  17. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5960-5 [PMID: 19321419]
  18. Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):107-18 [PMID: 16487043]
  19. Nat Genet. 2006 May;38(5):531-9 [PMID: 16604073]
  20. J Biol Chem. 2007 Nov 23;282(47):34365-71 [PMID: 17901053]
  21. Biochim Biophys Acta. 2012 Mar;1820(3):403-10 [PMID: 21855608]
  22. Semin Hematol. 2009 Oct;46(4):328-38 [PMID: 19786201]
  23. Haematologica. 2010 Nov;95(11):1814-22 [PMID: 20511666]
  24. Annu Rev Nutr. 2008;28:197-213 [PMID: 18489257]
  25. Blood. 2005 Dec 1;106(12):3979-84 [PMID: 16081696]
  26. Blood. 2010 Dec 23;116(26):6054-62 [PMID: 20844238]
  27. J Biol Chem. 2007 Dec 7;282(49):35646-56 [PMID: 17932044]
  28. Blood. 2011 May 12;117(19):5215-23 [PMID: 21427291]
  29. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10812-7 [PMID: 10485908]
  30. J Pediatr Hematol Oncol. 2011 Jan;33(1):74-8 [PMID: 21088618]
  31. Haematologica. 2010 Aug;95(8):1261-8 [PMID: 20179090]
  32. J Leukoc Biol. 1995 Oct;58(4):382-90 [PMID: 7561513]
  33. J Proteome Res. 2011 May 6;10(5):2397-408 [PMID: 21405025]
  34. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10919-24 [PMID: 9380735]
  35. N Engl J Med. 2011 Jun 30;364(26):2563-4 [PMID: 21714673]
  36. Autoimmun Rev. 2008 Jun;7(6):457-62 [PMID: 18558362]
  37. Blood. 2003 Sep 1;102(5):1884-92 [PMID: 12750164]
  38. Science. 2008 May 30;320(5880):1207-10 [PMID: 18511687]
  39. Science. 1985 Feb 1;227(4686):531-3 [PMID: 2578228]
  40. Hepatology. 1988 Jan-Feb;8(1):32-8 [PMID: 3338718]
  41. Nature. 2009 Jan 15;457(7227):318-21 [PMID: 19037245]
  42. Blood. 2005 Oct 1;106(7):2572-9 [PMID: 15947085]
  43. Cell Physiol Biochem. 2010;26(1):21-8 [PMID: 20502001]
  44. Nature. 2001 Jan 11;409(6817):198-201 [PMID: 11196644]
  45. J Exp Med. 2010 Aug 30;207(9):1807-17 [PMID: 20805564]
  46. J Clin Invest. 2004 May;113(9):1271-6 [PMID: 15124018]
  47. Antioxid Redox Signal. 2010 Feb;12(2):261-73 [PMID: 19659436]

MeSH Term

Adult
Animals
Antimicrobial Cationic Peptides
Cation Transport Proteins
Cytophagocytosis
Erythrocytes
Hepcidins
Homeostasis
Humans
Iron
Macrophages
Male
Mice
Ferroportin

Chemicals

Antimicrobial Cationic Peptides
Cation Transport Proteins
HAMP protein, human
Hamp protein, mouse
Hepcidins
Ferroportin
Iron

Word Cloud

Created with Highcharts 10.0.0ironmacrophagesfunctionerythrocyteshemoglobinrecyclingreleasehepatocyteshomeostasisprincipalaspectscavengingsplenichepaticphagocytizedegradesenescentdamagedrecovermainlyproductionnewalsocarriersenzymesrequiringSplenicredpulpspecializedincreasedexpressionproteinsuptakebreakdownhemeexporthumanscontributemajorityfluxextracellularfluidexceedingcontributiondietaryabsorptionstoredIroncloselyregulatedinteractionhepcidinpeptidehormoneproducedmacrophageexporterferroportinadditionhomeostaticroleemploymultiplemechanismscontainmicrobialinfectionsdeprivingmicrobesreviewdiscussesiron-scavengingcontexthostdefenseMacrophagessystemic

Similar Articles

Cited By