N-glycosylation of acid-sensing ion channel 1a regulates its trafficking and acidosis-induced spine remodeling.

Lan Jing, Xiang-Ping Chu, Yu-Qing Jiang, Daniel M Collier, Bin Wang, Qian Jiang, Peter M Snyder, Xiang-Ming Zha
Author Information
  1. Lan Jing: Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, Mobile, AL 36688, USA.

Abstract

Acid-sensing ion channel-1a (ASIC1a) is a potential therapeutic target for multiple neurological diseases. We studied here ASIC1a glycosylation and trafficking, two poorly understood processes pivotal in determining the functional outcome of an ion channel. We found that most ASIC1a in the mouse brain was fully glycosylated. Inhibiting glycosylation with tunicamycin reduced ASIC1a surface trafficking, dendritic targeting, and acid-activated current density. N-glycosylation of the two glycosylation sites, Asn393 and Asn366, has differential effects on ASIC1a biogenesis. Maturation of Asn393 increased ASIC1a surface and dendritic trafficking, pH sensitivity, and current density. In contrast, glycosylation of Asn366 was dispensable for ASIC1a function and may be a rate-limiting step in ASIC1a biogenesis. In addition, we revealed that acidosis reduced the density and length of dendritic spines in a time- and ASIC1a-dependent manner. ASIC1a N366Q, which showed increased glycosylation and dendritic targeting, potentiated acidosis-induced spine loss. Conversely, ASIC1a N393Q, which had diminished dendritic targeting and inhibited ASIC1a current dominant-negatively, had the opposite effect. These data tie N-glycosylation of ASIC1a with its trafficking. More importantly, by revealing a site-specific effect of acidosis on dendritic spines, our findings suggest that these processes have an important role in regulating synaptic plasticity and determining long-term consequences in diseases that generate acidosis.

References

  1. J Neurosci Res. 2004 Aug 15;77(4):498-506 [PMID: 15264219]
  2. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6752-7 [PMID: 15082829]
  3. Nature. 1997 Mar 13;386(6621):173-7 [PMID: 9062189]
  4. J Neurosci. 2004 Oct 6;24(40):8678-89 [PMID: 15470133]
  5. FEBS J. 2005 Apr;272(7):1625-38 [PMID: 15794750]
  6. Neuroscience. 2011 Oct 13;193:89-99 [PMID: 21767613]
  7. Cell. 2004 Sep 17;118(6):687-98 [PMID: 15369669]
  8. J Neurosci. 2006 May 17;26(20):5329-39 [PMID: 16707785]
  9. Neuroscience. 2010 Aug 25;169(2):574-83 [PMID: 20580786]
  10. Trends Neurosci. 2010 Mar;33(3):121-9 [PMID: 20138375]
  11. J Neurosci Methods. 2011 Feb 15;195(2):222-31 [PMID: 21184780]
  12. Am J Physiol Cell Physiol. 2004 Sep;287(3):C682-90 [PMID: 15115705]
  13. J Neurosci. 2002 Sep 15;22(18):8052-62 [PMID: 12223559]
  14. J Physiol. 2003 Jan 1;546(Pt 1):77-87 [PMID: 12509480]
  15. J Neurophysiol. 1997 Mar;77(3):1614-23 [PMID: 9084624]
  16. J Biol Chem. 2009 Oct 23;284(43):29320-5 [PMID: 19713212]
  17. Am J Physiol. 1994 Dec;267(6 Pt 1):C1682-90 [PMID: 7810611]
  18. J Neurosci Methods. 2005 Jan 30;141(1):41-53 [PMID: 15585287]
  19. Neuroscience. 2009 Aug 4;162(1):55-66 [PMID: 19376200]
  20. Nature. 2007 Sep 20;449(7160):316-23 [PMID: 17882215]
  21. J Neurosci. 2011 Feb 9;31(6):2101-12 [PMID: 21307247]
  22. J Physiol. 2003 Jul 1;550(Pt 1):135-47 [PMID: 12879864]
  23. Expert Rev Clin Pharmacol. 2010 May;3(3):331-46 [PMID: 22111614]
  24. Science. 2005 Nov 4;310(5749):866-9 [PMID: 16272125]
  25. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16556-61 [PMID: 17060608]
  26. J Neurosci. 2000 Mar 1;20(5):1722-34 [PMID: 10684874]
  27. Annu Rev Physiol. 2009;71:261-82 [PMID: 19575680]
  28. Biochemistry. 2007 Sep 25;46(38):10960-70 [PMID: 17711303]
  29. Cell. 2006 Sep 8;126(5):851-4 [PMID: 16959565]
  30. PLoS One. 2011;6(10):e26909 [PMID: 22046405]
  31. Nat Med. 2007 Dec;13(12):1483-9 [PMID: 17994101]
  32. Curr Opin Neurobiol. 2007 Jun;17(3):345-51 [PMID: 17451936]
  33. J Neurosci. 2003 Jul 2;23(13):5496-502 [PMID: 12843249]
  34. J Neurosci. 1993 Feb;13(2):413-22 [PMID: 8426220]
  35. Neuron. 2005 May 19;46(4):609-22 [PMID: 15944129]
  36. J Neurosci. 2009 Nov 11;29(45):14371-80 [PMID: 19906984]
  37. Biochem J. 2008 Jun 15;412(3):469-75 [PMID: 18307415]
  38. Nat Neurosci. 2001 Sep;4(9):869-70 [PMID: 11528414]
  39. Mol Cell Neurosci. 2005 Aug;29(4):494-506 [PMID: 15953736]
  40. Nat Neurosci. 2008 Jul;11(7):816-22 [PMID: 18536711]
  41. J Neurophysiol. 2008 Feb;99(2):426-41 [PMID: 18094106]
  42. J Biol Chem. 2008 Jan 25;283(4):1818-30 [PMID: 17984098]
  43. Adv Neurol. 1975;12:483-95 [PMID: 1155276]
  44. Glycobiology. 2011 May;21(5):634-43 [PMID: 21186285]
  45. J Neurosci. 2009 Jul 1;29(26):8438-46 [PMID: 19571134]
  46. Annu Rev Biochem. 2004;73:1019-49 [PMID: 15189166]
  47. Ciba Found Symp. 1982;87:77-100 [PMID: 6210513]
  48. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3573-8 [PMID: 19218436]
  49. Curr Opin Drug Discov Devel. 2009 Sep;12(5):693-704 [PMID: 19736627]
  50. Neuron. 2002 Apr 25;34(3):463-77 [PMID: 11988176]
  51. Neuron. 2005 Nov 23;48(4):635-46 [PMID: 16301179]
  52. Trends Cell Biol. 2005 Jul;15(7):364-70 [PMID: 15939591]
  53. Am J Physiol Renal Physiol. 2001 Sep;281(3):F391-9 [PMID: 11502587]
  54. Nature. 2009 Jul 30;460(7255):599-604 [PMID: 19641589]

Grants

  1. R01 HL072256-01A1/NHLBI NIH HHS
  2. R21 DA031259-01A1/NIDA NIH HHS
  3. T32 HL007121/NHLBI NIH HHS
  4. HL072256/NHLBI NIH HHS
  5. S10RR027535/NCRR NIH HHS
  6. R01 HL072256/NHLBI NIH HHS
  7. DA031259/NIDA NIH HHS
  8. S10 RR027535/NCRR NIH HHS
  9. R21 DA031259/NIDA NIH HHS

MeSH Term

Acid Sensing Ion Channels
Acidosis
Analysis of Variance
Animals
Animals, Newborn
Asparagine
Biotinylation
CHO Cells
Cricetinae
Cricetulus
Dendritic Spines
Female
Glycine
Glycosylation
Hippocampus
Hydrogen-Ion Concentration
Male
Membrane Potentials
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microscopy, Confocal
Mutation
Nerve Tissue Proteins
Neurons
Oocytes
Organ Culture Techniques
Patch-Clamp Techniques
Protein Transport
Rats
Sodium Channels
Transfection
Tunicamycin
Xenopus

Chemicals

ASIC1 protein, mouse
Acid Sensing Ion Channels
Nerve Tissue Proteins
Sodium Channels
Tunicamycin
Asparagine
Glycine

Word Cloud

Created with Highcharts 10.0.0ASIC1adendriticglycosylationtraffickingiontargetingcurrentdensityN-glycosylationacidosisdiseasestwoprocessesdeterminingchannelreducedsurfaceAsn393Asn366biogenesisincreasedspinesacidosis-inducedspineeffectAcid-sensingchannel-1apotentialtherapeutictargetmultipleneurologicalstudiedpoorlyunderstoodpivotalfunctionaloutcomefoundmousebrainfullyglycosylatedInhibitingtunicamycinacid-activatedsitesdifferentialeffectsMaturationpHsensitivitycontrastdispensablefunctionmayrate-limitingstepadditionrevealedlengthtime-ASIC1a-dependentmannerN366QshowedpotentiatedlossConverselyN393Qdiminishedinhibiteddominant-negativelyoppositedatatieimportantlyrevealingsite-specificfindingssuggestimportantroleregulatingsynapticplasticitylong-termconsequencesgenerateacid-sensing1aregulatesremodeling

Similar Articles

Cited By