Characterization of phospholipid hydroperoxide glutathione metabolizing peroxidase (gpx4) isoforms in Coho salmon olfactory and liver tissues and their modulation by cadmium.

Lu Wang, Sean M Harris, Herbert M Espinoza, Valerie McClain, Evan P Gallagher
Author Information
  1. Lu Wang: Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.

Abstract

Exposure to environmental contaminants, including various pesticides and trace metals, can disrupt critical olfactory-driven behaviors of fish such as homing to natal streams, mate selection, and an ability to detect predators and prey. These neurobehavioral injuries have been linked to reduced survival and population declines. Despite the importance of maintaining proper olfactory signaling processes in the presence of chemical exposures, little is known regarding chemical detoxification in the salmon olfactory system, and in particular, the antioxidant defenses that maintain olfactory function. An understudied, yet critical component of cellular antioxidant defense is phospholipid hydroperoxide glutathione peroxidase (PHGPx/GPx4), an isoform within the family of selenium-dependent glutathione peroxidase (GPx) enzymes that can directly reduce lipid peroxides and other membrane-bound complex hydroperoxides. In this study, we cloned two gpx4 isoforms (gpx4a and gpx4b) from Coho salmon olfactory tissues and compared their modulation in olfactory and liver tissues by cadmium, an environmental pollutant and olfactory toxicant that cause oxidative damage as a mechanism of toxicity. Amino acid sequence comparisons of the two gpx4 isoforms shared 71% identity, and also relatively high sequence identities when compared with other fish GPx4 isoforms. Sequence comparisons with human GPx4 indicated conservation of three important active sites at selenocysteine (U46), glutamine (Q81), and tryptophan (W136), suggesting similar catalytic activity between fish and mammalian GPx4 isoforms. Tissue profiling confirmed the expression of gpx4a and gpx4b in all ten Coho tissues examined. The expression of gpx4 mRNAs in the Coho olfactory system was accompanied by comparably high initial rates of GPx4 enzymatic activity in mitochondrial and cytosolic fractions. Exposure to low (3.7 ppb) and high (347 ppb) environmental Cd concentrations for 24-48 h significantly decreased gpx4a expression in Coho olfactory rosettes, whereas olfactory gpx4b mRNA expression was not modulated by exposures at these concentrations. In summary, Coho salmon express two paralogs of gpx4, a key enzyme in the maintenance of signal transduction processes that protect against cellular oxidative damage. The Cd-associated downregulation of salmon olfactory gpx4a expression in particular, may be associated with the loss of olfactory signal transduction that accompanies metal-associated loss of olfaction in salmonids.

References

  1. J Biol Chem. 2003 Sep 5;278(36):34286-90 [PMID: 12819198]
  2. Comp Biochem Physiol C Toxicol Pharmacol. 2010 Jan;151(1):99-106 [PMID: 19744577]
  3. Biochim Biophys Acta. 1985 Mar 29;839(1):62-70 [PMID: 3978121]
  4. Methods Enzymol. 1990;186:448-57 [PMID: 2233312]
  5. Biochim Biophys Acta. 1989 Nov 6;1006(1):140-3 [PMID: 2804065]
  6. Environ Toxicol Chem. 2003 Oct;22(10):2266-74 [PMID: 14551988]
  7. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1991;100(1-2):253-7 [PMID: 1677859]
  8. Environ Toxicol Chem. 2010 May;29(5):1113-22 [PMID: 20821547]
  9. Comp Biochem Physiol C Toxicol Pharmacol. 2002 Apr;131(4):491-500 [PMID: 11976064]
  10. Free Radic Biol Med. 2007 Jul 15;43(2):191-201 [PMID: 17603929]
  11. Inhal Toxicol. 2008 Oct;20(13):1169-77 [PMID: 18951233]
  12. Front Mol Neurosci. 2011 Jul 28;4:12 [PMID: 21847368]
  13. Biomark Insights. 2007 Mar 29;2:107-16 [PMID: 19662196]
  14. Free Radic Biol Med. 1999 Nov;27(9-10):951-65 [PMID: 10569628]
  15. Environ Sci Technol. 2007 Apr 15;41(8):2998-3004 [PMID: 17533870]
  16. FASEB J. 2003 Sep;17(12):1694-6 [PMID: 12958179]
  17. J Neurosci Res. 2006 Jul;84(1):202-8 [PMID: 16673405]
  18. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  19. Biomed Environ Sci. 1997 Sep;10(2-3):327-32 [PMID: 9315326]
  20. Toxicol Lett. 1996 Dec;89(1):65-9 [PMID: 8952713]
  21. Biol Chem. 2007 Oct;388(10):1007-17 [PMID: 17937614]
  22. Biometals. 2011 Dec;24(6):981-92 [PMID: 21533903]
  23. Biochim Biophys Acta. 1994 Oct 19;1208(2):211-21 [PMID: 7524677]
  24. Biol Chem. 2006 Oct-Nov;387(10-11):1329-35 [PMID: 17081103]
  25. Toxicol Appl Pharmacol. 2009 Aug 1;238(3):209-14 [PMID: 19236887]
  26. Comp Biochem Physiol C Toxicol Pharmacol. 2009 Jul;150(1):101-6 [PMID: 19345279]
  27. Indian J Exp Biol. 1992 Jul;30(7):597-601 [PMID: 1459633]
  28. Free Radic Biol Med. 2003 Feb 15;34(4):496-502 [PMID: 12566075]
  29. J Biol Chem. 1990 Jan 5;265(1):454-61 [PMID: 2294113]
  30. Neurotoxicol Teratol. 1996 Jan-Feb;18(1):89-98 [PMID: 8700048]
  31. Pharmacol Toxicol. 1991 Oct;69(4):242-52 [PMID: 1720248]
  32. Genes Cells. 2000 Dec;5(12):1049-60 [PMID: 11168591]
  33. Biochemistry. 2007 Aug 7;46(31):9041-9 [PMID: 17630701]
  34. Toxicology. 1999 Mar 1;133(1):43-58 [PMID: 10413193]
  35. Antioxid Redox Signal. 2010 Apr 1;12(7):819-27 [PMID: 19769463]
  36. Brain Res Brain Res Rev. 2001 Aug;36(1):46-59 [PMID: 11516772]
  37. Mamm Genome. 1999 Jun;10(6):601-5 [PMID: 10341094]
  38. J Exp Biol. 2003 Jun;206(Pt 11):1779-90 [PMID: 12727999]
  39. Gene Expr Patterns. 2006 Jun;6(5):489-94 [PMID: 16458079]
  40. Free Radic Biol Med. 2002 Jul 15;33(2):154-72 [PMID: 12106812]
  41. Environ Sci Technol. 2007 Jul 15;41(14):5143-8 [PMID: 17711236]
  42. Gene. 1997 Oct 1;198(1-2):245-9 [PMID: 9370288]
  43. J Biol Chem. 1996 Mar 1;271(9):4653-8 [PMID: 8617728]
  44. Aquat Toxicol. 2004 Aug 25;69(3):247-58 [PMID: 15276330]
  45. Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):889-99 [PMID: 15998244]
  46. Toxicol Appl Pharmacol. 2007 Oct 1;224(1):72-80 [PMID: 17706735]
  47. J Biol Chem. 1999 Feb 19;274(8):4924-33 [PMID: 9988735]
  48. Biochem J. 2001 Jan 1;353(Pt 1):91-100 [PMID: 11115402]
  49. Environ Toxicol Chem. 2006 Oct;25(10):2809-17 [PMID: 17022425]
  50. Mol Cell Biochem. 2001 Jun;222(1-2):159-71 [PMID: 11678598]
  51. Biochem Biophys Res Commun. 2003 May 30;305(2):278-86 [PMID: 12745070]
  52. J Biol Chem. 2004 Dec 31;279(53):55137-46 [PMID: 15496407]
  53. Environ Toxicol. 2011 Nov;26(6):623-32 [PMID: 20549629]
  54. Neurotoxicology. 1999 Apr-Jun;20(2-3):181-95 [PMID: 10385882]
  55. Comp Biochem Physiol C Toxicol Pharmacol. 2007 May;145(4):595-600 [PMID: 17369103]
  56. Aquat Toxicol. 2011 Jan 17;101(1):13-30 [PMID: 21074869]
  57. Free Radic Biol Med. 2004 Jun 1;36(11):1434-43 [PMID: 15135180]
  58. Aquat Toxicol. 2012 Apr;110-111:37-44 [PMID: 22257444]
  59. J Biol Chem. 1998 Jan 23;273(4):1990-7 [PMID: 9442035]
  60. Prostaglandins Other Lipid Mediat. 1999 Oct;58(2-4):65-75 [PMID: 10560610]
  61. Comp Biochem Physiol B Biochem Mol Biol. 2010 Aug;156(4):287-97 [PMID: 20416392]
  62. Biochim Biophys Acta. 1990 Nov 9;1036(2):88-94 [PMID: 2223835]
  63. Environ Toxicol. 2014 Feb;29(2):129-37 [PMID: 21987389]
  64. J Endocrinol. 2005 Mar;184(3):455-65 [PMID: 15749805]
  65. Biochim Biophys Acta. 1982 Feb 15;710(2):197-211 [PMID: 7066358]
  66. Environ Health Perspect. 2009 Mar;117(3):348-53 [PMID: 19337507]
  67. J Biol Chem. 2000 Jan 21;275(3):1887-96 [PMID: 10636889]
  68. J Biol Chem. 2008 Jan 25;283(4):2427-38 [PMID: 18032379]
  69. Comp Biochem Physiol C Toxicol Pharmacol. 2011 Sep;154(3):242-53 [PMID: 21699996]
  70. Free Radic Biol Med. 2003 Jan 15;34(2):145-69 [PMID: 12521597]
  71. Biometals. 2010 Oct;23(5):927-40 [PMID: 20361350]
  72. Cell Metab. 2008 Sep;8(3):237-48 [PMID: 18762024]
  73. Aquat Toxicol. 2004 Aug 10;69(2):133-48 [PMID: 15261450]
  74. Altern Med Rev. 1998 Aug;3(4):262-70 [PMID: 9727078]
  75. FASEB J. 2001 May;15(7):1236-8 [PMID: 11344099]
  76. Mol Cell Biol. 2005 Sep;25(17):7637-44 [PMID: 16107710]
  77. Free Radic Biol Med. 2008 Mar 15;44(6):1075-87 [PMID: 18206984]
  78. FASEB J. 2009 Sep;23(9):3233-42 [PMID: 19417079]

Grants

  1. P42 ES004696/NIEHS NIH HHS
  2. P42-ES004696/NIEHS NIH HHS

MeSH Term

Animals
Cadmium
Cloning, Molecular
Gene Expression Regulation, Enzymologic
Glutathione Peroxidase
Liver
Olfactory Mucosa
Oncorhynchus kisutch
Phospholipid Hydroperoxide Glutathione Peroxidase
Protein Isoforms
RNA, Messenger
Signal Transduction
Water Pollutants, Chemical

Chemicals

Protein Isoforms
RNA, Messenger
Water Pollutants, Chemical
Cadmium
Phospholipid Hydroperoxide Glutathione Peroxidase
Glutathione Peroxidase

Word Cloud

Created with Highcharts 10.0.0olfactoryCohosalmongpx4isoformsexpressiongpx4atissuesGPx4environmentalfishglutathioneperoxidasetwogpx4bhighExposurecancriticalprocesseschemicalexposuressystemparticularantioxidantcellularphospholipidhydroperoxidecomparedmodulationlivercadmiumoxidativedamagesequencecomparisonsactivityppbconcentrationssignaltransductionlosscontaminantsincludingvariouspesticidestracemetalsdisruptolfactory-drivenbehaviorshomingnatalstreamsmateselectionabilitydetectpredatorspreyneurobehavioralinjurieslinkedreducedsurvivalpopulationdeclinesDespiteimportancemaintainingpropersignalingpresencelittleknownregardingdetoxificationdefensesmaintainfunctionunderstudiedyetcomponentdefensePHGPx/GPx4isoformwithinfamilyselenium-dependentGPxenzymesdirectlyreducelipidperoxidesmembrane-boundcomplexhydroperoxidesstudyclonedpollutanttoxicantcausemechanismtoxicityAminoacidshared71%identityalsorelativelyidentitiesSequencehumanindicatedconservationthreeimportantactivesitesselenocysteineU46glutamineQ81tryptophanW136suggestingsimilarcatalyticmammalianTissueprofilingconfirmedtenexaminedmRNAsaccompaniedcomparablyinitialratesenzymaticmitochondrialcytosolicfractionslow37347Cd24-48hsignificantlydecreasedrosetteswhereasmRNAmodulatedsummaryexpressparalogskeyenzymemaintenanceprotectCd-associateddownregulationmayassociatedaccompaniesmetal-associatedolfactionsalmonidsCharacterizationmetabolizing

Similar Articles

Cited By (11)