Nutrient Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using SPARROW Watershed Models.

Dale M Robertson, David A Saad
Author Information

Abstract

Nutrient input to the Laurentian Great Lakes continues to cause problems with eutrophication. To reduce the extent and severity of these problems, target nutrient loads were established and Total Maximum Daily Loads are being developed for many tributaries. Without detailed loading information it is difficult to determine if the targets are being met and how to prioritize rehabilitation efforts. To help address these issues, SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed for estimating loads and sources of phosphorus (P) and nitrogen (N) from the United States (U.S.) portion of the Great Lakes, Upper Mississippi, Ohio, and Red River Basins. Results indicated that recent U.S. loadings to Lakes Michigan and Ontario are similar to those in the 1980s, whereas loadings to Lakes Superior, Huron, and Erie decreased. Highest loads were from tributaries with the largest watersheds, whereas highest yields were from areas with intense agriculture and large point sources of nutrients. Tributaries were ranked based on their relative loads and yields to each lake. Input from agricultural areas was a significant source of nutrients, contributing ∼33-44% of the P and ∼33-58% of the N, except for areas around Superior with little agriculture. Point sources were also significant, contributing ∼14-44% of the P and 13-34% of the N. Watersheds around Lake Erie contributed nutrients at the highest rate (similar to intensively farmed areas in the Midwest) because they have the largest nutrient inputs and highest delivery ratio.

References

  1. Environ Manage. 2007 Feb;39(2):194-212 [PMID: 17122998]
  2. J Am Water Resour Assoc. 2011 Oct;47(5):916-932 [PMID: 22457575]
  3. J Am Water Resour Assoc. 2009 Apr;45(2):534-549 [PMID: 22457567]
  4. Environ Sci Technol. 2008 Feb 1;42(3):822-30 [PMID: 18323108]
  5. Ecol Appl. 2009 Jul;19(5):1127-34 [PMID: 19688921]
  6. Environ Sci Technol. 2002 Jun 15;36(12):2614-29 [PMID: 12099457]
  7. Environ Manage. 2009 Jan;43(1):69-83 [PMID: 18521658]
  8. J Am Water Resour Assoc. 2011 Oct;47(5):933-949 [PMID: 22457576]
  9. J Am Water Resour Assoc. 2011 Oct;47(5):950-964 [PMID: 22457577]
  10. Environ Sci Technol. 2007 Nov 15;41(22):7661-7 [PMID: 18075071]

Word Cloud

Created with Highcharts 10.0.0LakesloadsareasGreatWatershedsourcesPNhighestnutrientsNutrientLaurentianproblemsnutrientdevelopedtributariesSPARROWUSloadingssimilarwhereasSuperiorErielargestyieldsagriculturesignificantcontributingaroundinputcontinuescauseeutrophicationreduceextentseveritytargetestablishedTotalMaximumDailyLoadsmanyWithoutdetailedloadinginformationdifficultdeterminetargetsmetprioritizerehabilitationeffortshelpaddressissuesSPAtiallyReferencedRegressionsattributesmodelsestimatingphosphorusnitrogenUnitedStatesportionUpperMississippiOhioRedRiverBasinsResultsindicatedrecentMichiganOntario1980sHurondecreasedHighestwatershedsintenselargepointTributariesrankedbasedrelativelakeInputagriculturalsource∼33-44%∼33-58%exceptlittlePointalso∼14-44%13-34%WatershedsLakecontributedrateintensivelyfarmedMidwestinputsdeliveryratioInputsSourceEstimatedUsingModels

Similar Articles

Cited By (24)