When subterranean termites challenge the rules of fungal epizootics.

Thomas Chouvenc, Nan-Yao Su
Author Information
  1. Thomas Chouvenc: Department of Entomology and Nematology, University of Florida, Fort Lauderdale, Florida, United States of America. tomchouv@ufl.edu

Abstract

Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle.

References

  1. Annu Rev Entomol. 2009;54:405-23 [PMID: 18793100]
  2. J Econ Entomol. 2008 Jun;101(3):885-93 [PMID: 18613591]
  3. J Theor Biol. 2004 Jan 7;226(1):45-51 [PMID: 14637053]
  4. J Invertebr Pathol. 2011 Jun;107(2):100-6 [PMID: 21414322]
  5. Bull Entomol Res. 2000 Feb;90(1):9-21 [PMID: 10948359]
  6. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12652-7 [PMID: 19506247]
  7. J Evol Biol. 2011 May;24(5):954-64 [PMID: 21306465]
  8. Curr Biol. 2007 Aug 21;17(16):R693-702 [PMID: 17714663]
  9. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):129-42 [PMID: 18926974]
  10. Proc Biol Sci. 1997 Jul 22;264(1384):985-91 [PMID: 9263465]
  11. Environ Entomol. 2010 Oct;39(5):1601-7 [PMID: 22546458]
  12. Proc Biol Sci. 2002 Sep 7;269(1502):1811-9 [PMID: 12350269]
  13. Proc Biol Sci. 2010 Sep 22;277(1695):2821-8 [PMID: 20444720]
  14. Proc Biol Sci. 2004 Feb 7;271 Suppl 3:S104-6 [PMID: 15101433]
  15. J Econ Entomol. 2005 Dec;98(6):2143-52 [PMID: 16539144]
  16. J Econ Entomol. 2010 Aug;103(4):1327-37 [PMID: 20857744]
  17. J Invertebr Pathol. 2009 Jul;101(3):234-41 [PMID: 19463828]
  18. J Biol Chem. 2001 Feb 9;276(6):4085-92 [PMID: 11053427]
  19. J Invertebr Pathol. 2009 Jun;101(2):130-6 [PMID: 19426734]
  20. Insect Mol Biol. 2010 Oct;19(5):669-74 [PMID: 20561089]
  21. Naturwissenschaften. 2007 Jan;94(1):25-33 [PMID: 16953417]
  22. Dev Comp Immunol. 2012 Feb;36(2):372-7 [PMID: 21824492]
  23. J Insect Physiol. 2011 Sep;57(9):1259-66 [PMID: 21708164]

MeSH Term

Animals
Behavior, Animal
Biological Control Agents
Isoptera
Metarhizium
Soil Microbiology

Chemicals

Biological Control Agents

Word Cloud

Created with Highcharts 10.0.0termitesfungalsubterraneanentomopathogenicanisopliaewithintermite50biologicalcontrolusefungusHoweverresultingepizooticgroupbehavioralpathogenMlifecycleepizooticspastyearsrepeatedattemptsmadedeveloptechnologieseconomicallyimportantspeciesfocusingprimarilyMetarhiziumsuccessfulfieldimplementationreportedpreviousworkconductedassumptionenvironmentalconditionsnestsfavorgrowthdispersionagentsEpizooticsrelyabilitypathogenicmicroorganismself-replicatedisperseamonghostpopulationstudyshowsduemultileveldiseaseresistancemechanismsincidenceunlikelyexposinggroupsplanararenascontainingsandparticlestreatedrangedensitiesablequantifypatternsfunctiondeathratiosexposureinabilitycompleteCoptotermesformosanusIsoptera:Rhinotermitidaemainlyresultcannibalismburialbehaviornestmatesevenmortalityreached75%colonysuperorganismcanpreventtraditionalconceptsepizootiologymayapplysocialinsectexposedpathogensevolvedphysiologicalmeansdisruptingchallengerules

Similar Articles

Cited By (28)