Synaptic Pattern of KA1 and KA2 upon the Direction-Selective Ganglion Cells in Developing and Adult Mouse Retina.

Jee-Geon Lee, Kyoung-Pil Lee, Chang-Jin Jeon
Author Information
  1. Jee-Geon Lee: Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 702-701, South Korea.

Abstract

The detection of image motion is important to vision. Direction-selective retinal ganglion cells (DS-RGCs) respond strongly to stimuli moving in one direction of motion and are strongly inhibited by stimuli moving in the opposite direction. In this article, we investigated the distributions of kainate glutamate receptor subtypes KA1 and KA2 on the dendritic arbors of DS-RGCs in developing (5, 10) days postnatal (PN) and adult Mouse retina to search for anisotropies. The distribution of kainate receptor subtypes on the DS-RGCs was determined using antibody immunocytochemistry. To identify their characteristic morphology, DS-RGCs were injected with Lucifer yellow. The triple-labeled images of dendrites, kinesin II, and receptors were visualized by confocal microscopy and were reconstructed from high-resolution confocal images. We found no evidence of asymmetry in any of the kainate receptor subunits examined on the dendritic arbors of both the On and Off layers of DS-RGCs in all periods of developing and adult stage that would predict direction selectivity.

Keywords

References

  1. Trends Neurosci. 2003 Jul;26(7):379-85 [PMID: 12850434]
  2. Science. 2000 Sep 29;289(5488):2347-50 [PMID: 11009420]
  3. Neurosci Res. 2007 Jul;58(3):255-64 [PMID: 17466402]
  4. J Comp Neurol. 2007 Aug 20;503(6):803-14 [PMID: 17570502]
  5. J Comp Neurol. 2007 Jul 10;503(2):244-59 [PMID: 17492624]
  6. Mol Vis. 2007 Jun 18;13:933-48 [PMID: 17653033]
  7. J Comp Neurol. 2008 Sep 10;510(2):221-36 [PMID: 18623177]
  8. Neurosci Res. 2006 Dec;56(4):427-34 [PMID: 17007948]
  9. J Comp Neurol. 2003 Feb 3;456(2):154-66 [PMID: 12509872]
  10. J Neurosci. 1994 Nov;14(11 Pt 1):6301-16 [PMID: 7965037]
  11. Nature. 2011 Jan 20;469(7330):407-10 [PMID: 21170022]
  12. Nature. 2002 Aug 22;418(6900):845-52 [PMID: 12192402]
  13. Neuron. 2007 Jul 19;55(2):179-86 [PMID: 17640521]
  14. J Neurosci. 2002 Dec 15;22(24):10509-13 [PMID: 12486140]
  15. Rev Oculomot Res. 1993;5:79-100 [PMID: 8420563]
  16. J Neurobiol. 2004 Nov;61(2):236-49 [PMID: 15389605]
  17. J Neurosci. 1999 Feb 1;19(3):1027-37 [PMID: 9920666]
  18. Neuron. 2010 Dec 22;68(6):1159-72 [PMID: 21172616]
  19. J Neurosci. 2002 Sep 1;22(17):7712-20 [PMID: 12196594]
  20. Brain Res. 2001 Feb 2;890(2):211-21 [PMID: 11164787]
  21. J Comp Neurol. 2002 May 27;447(2):138-51 [PMID: 11977117]
  22. J Comp Neurol. 2011 Feb 1;519(2):341-57 [PMID: 21165978]
  23. Science. 1963 Feb 1;139(3553):412-4 [PMID: 13966712]
  24. J Neurochem. 1981 Oct;37(4):867-77 [PMID: 7320727]
  25. Neuron. 2006 Sep 21;51(6):787-99 [PMID: 16982423]
  26. Vision Res. 2008 Oct;48(23-24):2466-75 [PMID: 18782584]
  27. Neuron. 2008 May 22;58(4):499-506 [PMID: 18498732]
  28. Neuron. 2001 Jun;30(3):771-80 [PMID: 11430810]
  29. J Neurophysiol. 1997 Feb;77(2):675-89 [PMID: 9065840]
  30. J Comp Neurol. 2005 Apr 18;484(4):357-91 [PMID: 15770656]
  31. Nature. 2011 Mar 10;471(7337):183-8 [PMID: 21390125]
  32. Cytometry. 1988 May;9(3):195-200 [PMID: 3378457]
  33. J Neurosci. 1997 Dec 1;17(23):9298-307 [PMID: 9364075]
  34. Brain Res. 1984 Apr 23;298(1):187-90 [PMID: 6722555]
  35. J Physiol. 2009 Feb 15;587(Pt 4):819-28 [PMID: 19103682]
  36. Brain Res. 2007 Sep 19;1170:13-9 [PMID: 17716634]
  37. J Comp Neurol. 2000 Aug 14;424(1):1-23 [PMID: 10888735]
  38. Annu Rev Neurosci. 1994;17:31-108 [PMID: 8210177]
  39. Nature. 1997 Sep 25;389(6649):378-82 [PMID: 9311778]
  40. Trends Neurosci. 2005 Aug;28(8):395-6 [PMID: 15979167]
  41. J Comp Neurol. 2002 Sep 16;451(2):115-26 [PMID: 12209831]
  42. Curr Opin Neurobiol. 2002 Aug;12(4):405-10 [PMID: 12139988]
  43. Science. 1992 Dec 18;258(5090):1949-52 [PMID: 1470920]
  44. J Comp Neurol. 2003 Nov 3;466(1):136-47 [PMID: 14515245]
  45. Philos Trans R Soc Lond B Biol Sci. 1982 Jul 27;298(1090):227-63 [PMID: 6127730]
  46. J Neurosci. 1994 Sep;14(9):5267-80 [PMID: 8083735]
  47. J Neurosci. 1998 Nov 1;18(21):8936-46 [PMID: 9786999]
  48. Vis Neurosci. 2002 Jul-Aug;19(4):453-65 [PMID: 12511078]
  49. J Physiol. 2008 Sep 15;586(18):4371-6 [PMID: 18617561]
  50. J Comp Neurol. 1999 Apr 28;407(1):65-76 [PMID: 10213188]
  51. Nature. 2011 Jan 20;469(7330):402-6 [PMID: 21131947]
  52. J Physiol. 2005 Feb 1;562(Pt 3):915-23 [PMID: 15564281]
  53. Vis Neurosci. 1997 Jan-Feb;14(1):39-54 [PMID: 9057267]
  54. J Comp Neurol. 2002 Jul 22;449(2):195-205 [PMID: 12115689]
  55. Neuron. 2009 May 14;62(3):327-34 [PMID: 19447089]

Word Cloud

Created with Highcharts 10.0.0DS-RGCsdirectionkainatereceptormotionretinalganglionstronglystimulimovingglutamatesubtypesKA1KA2dendriticarborsdevelopingadultimmunocytochemistryimagesconfocalselectivitycelldetectionimageimportantvisionDirection-selectivecellsrespondoneinhibitedoppositearticleinvestigateddistributions510dayspostnatalPNmouseretinasearchanisotropiesdistributiondeterminedusingantibodyidentifycharacteristicmorphologyinjectedLuciferyellowtriple-labeleddendriteskinesinIIreceptorsvisualizedmicroscopyreconstructedhigh-resolutionfoundevidenceasymmetrysubunitsexaminedlayersperiodsstagepredictSynapticPatternuponDirection-SelectiveGanglionCellsDevelopingAdultMouseRetinainjection

Similar Articles

Cited By