Optimizing provider recruitment for influenza surveillance networks.

Samuel V Scarpino, Nedialko B Dimitrov, Lauren Ancel Meyers
Author Information
  1. Samuel V Scarpino: The University of Texas at Austin, Section of Integrative Biology, Austin, Texas, United States of America. scarpino@utexas.edu

Abstract

The increasingly complex and rapid transmission dynamics of many infectious diseases necessitates the use of new, more advanced methods for surveillance, early detection, and decision-making. Here, we demonstrate that a new method for optimizing surveillance networks can improve the quality of epidemiological information produced by typical provider-based networks. Using past surveillance and Internet search data, it determines the precise locations where providers should be enrolled. When applied to redesigning the provider-based, influenza-like-illness surveillance network (ILINet) for the state of Texas, the method identifies networks that are expected to significantly outperform the existing network with far fewer providers. This optimized network avoids informational redundancies and is thereby more effective than networks designed by conventional methods and a recently published algorithm based on maximizing population coverage. We show further that Google Flu Trends data, when incorporated into a network as a virtual provider, can enhance but not replace traditional surveillance methods.

References

  1. Fam Pract. 2006 Apr;23(2):151-8 [PMID: 16464870]
  2. PLoS Med. 2008 Jul 8;5(7):e151 [PMID: 18613747]
  3. Am J Epidemiol. 2003 Nov 15;158(10):996-1006 [PMID: 14607808]
  4. Eur J Epidemiol. 1998 Apr;14(3):275-85 [PMID: 9663521]
  5. JAMA. 2004 Sep 15;292(11):1333-40 [PMID: 15367555]
  6. J Epidemiol Community Health. 1998 Apr;52 Suppl 1:32S-38S [PMID: 9764269]
  7. Am J Epidemiol. 2009 Nov 15;170(10):1300-6 [PMID: 19822570]
  8. J Am Med Inform Assoc. 2009 Nov-Dec;16(6):855-63 [PMID: 19717809]
  9. Arch Intern Med. 2000 Nov 27;160(21):3243-7 [PMID: 11088084]
  10. Science. 2006 Apr 21;312(5772):447-51 [PMID: 16574822]
  11. Euro Surveill. 2010 Jul 22;15(29): [PMID: 20667303]
  12. Am J Public Health. 2010 Jul;100(7):1237-42 [PMID: 20530760]
  13. J Biomed Inform. 2009 Feb;42(1):90-9 [PMID: 18593605]
  14. Int J Epidemiol. 2006 Oct;35(5):1314-21 [PMID: 16926216]
  15. J Epidemiol Community Health. 1995 Aug;49 Suppl 1:14-6 [PMID: 7561663]
  16. Nature. 2009 Feb 19;457(7232):1012-4 [PMID: 19020500]
  17. Bull World Health Organ. 1969;41(3):393-8 [PMID: 5309444]
  18. Eur J Epidemiol. 1999 May;15(5):467-73 [PMID: 10442473]
  19. Aust N Z J Public Health. 2006 Aug;30(4):337-41 [PMID: 16956163]
  20. Euro Surveill. 2009 Aug 27;14(34): [PMID: 19712648]
  21. Emerg Infect Dis. 2009 Oct;15(10):1603-8 [PMID: 19861053]

Grants

  1. U01 GM087719/NIGMS NIH HHS

MeSH Term

Community Networks
Computer Simulation
Data Mining
Disease Outbreaks
Humans
Influenza, Human
Internet
Models, Statistical
Population Surveillance

Word Cloud

Created with Highcharts 10.0.0surveillancenetworksnetworkmethodsnewmethodcanprovider-baseddataprovidersproviderincreasinglycomplexrapidtransmissiondynamicsmanyinfectiousdiseasesnecessitatesuseadvancedearlydetectiondecision-makingdemonstrateoptimizingimprovequalityepidemiologicalinformationproducedtypicalUsingpastInternetsearchdeterminespreciselocationsenrolledappliedredesigninginfluenza-like-illnessILINetstateTexasidentifiesexpectedsignificantlyoutperformexistingfarfeweroptimizedavoidsinformationalredundanciestherebyeffectivedesignedconventionalrecentlypublishedalgorithmbasedmaximizingpopulationcoverageshowGoogleFluTrendsincorporatedvirtualenhancereplacetraditionalOptimizingrecruitmentinfluenza

Similar Articles

Cited By