Convergence, recurrence and diversification of complex sperm traits in diving beetles (Dytiscidae).

Dawn M Higginson, Kelly B Miller, Kari A Segraves, Scott Pitnick
Author Information
  1. Dawn M Higginson: Department of Biology, Syracuse University, Syracuse, New York 13244, USA. dmhigginson@email.arizona.edu

Abstract

Sperm display remarkable morphological diversity among even closely related species, a pattern that is widely attributed to postcopulatory sexual selection. Surprisingly few studies have used phylogenetic analyses to discern the details of evolutionary diversification in ornaments and armaments subject to sexual selection, and the origins of novel sperm traits and their subsequent modification are particularly poorly understood. Here we investigate sperm evolution in diving beetles (Dytiscidae), revealing dramatic diversification in flagellum length, head shape, presence of sperm heteromorphism, and the presence/type of sperm conjugation, an unusual trait where two or more sperm unite for motility or transport. Sperm conjugation was found to be the ancestral condition in diving beetles, with subsequent diversification into three forms, each exhibiting varying degrees of evolutionary loss, convergence, and recurrence. Sperm head shape, but not length or heteromorphism, was found to evolve in a significantly correlated manner with conjugation, consistent with the different mechanisms of head alignment and binding required for the different forms of conjugation. Our study reveals that sperm morphological evolution is channeled along particular evolutionary pathways (i.e., conjugate form), yet subject to considerable diversification within those pathways through modification in sperm length, head shape, and heteromorphism.

References

  1. Science. 2008 Jun 20;320(5883):1632-5 [PMID: 18566285]
  2. Biol Rev Camb Philos Soc. 2011 Feb;86(1):249-70 [PMID: 20608927]
  3. Mol Biol Evol. 2007 Jun;24(6):1380-3 [PMID: 17387100]
  4. Syst Biol. 2004 Oct;53(5):673-84 [PMID: 15545248]
  5. Zoolog Sci. 2007 Nov;24(11):1115-21 [PMID: 18348612]
  6. Nature. 2002 Jul 11;418(6894):174-7 [PMID: 12110888]
  7. Am Nat. 1997 May;149(5):933-54 [PMID: 18811256]
  8. Biol Rev Camb Philos Soc. 2011 May;86(2):367-77 [PMID: 20659104]
  9. Evolution. 2000 Jun;54(3):1052-6 [PMID: 10937280]
  10. Evolution. 2006 Oct;60(10):2064-80 [PMID: 17133863]
  11. Evolution. 2005 Feb;59(2):361-73 [PMID: 15807421]
  12. PLoS Biol. 2008 May 27;6(5):e130 [PMID: 18507504]
  13. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10614-8 [PMID: 7479851]
  14. Evolution. 2000 Jun;54(3):1057-60 [PMID: 10937281]
  15. Evolution. 2010 Dec;64(12):3609-19 [PMID: 20629731]
  16. Nature. 1994 Apr 7;368(6471):539-42 [PMID: 8139686]
  17. Evolution. 2007 Apr;61(4):850-63 [PMID: 17439617]
  18. Zoolog Sci. 2003 Mar;20(3):377-82 [PMID: 12692398]
  19. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4538-43 [PMID: 22323584]
  20. Evolution. 2010 Nov;64(11):3085-100 [PMID: 20633044]
  21. Evolution. 2000 Dec;54(6):2119-33 [PMID: 11209787]
  22. Biol Rev Camb Philos Soc. 1992 Nov;67(4):551-93 [PMID: 1463811]
  23. J Exp Biol. 2009 Jul;212(Pt 14):2215-23 [PMID: 19561211]
  24. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1128-32 [PMID: 19164576]
  25. Nature. 1981 Sep 3;293(5827):55-7 [PMID: 7266658]
  26. Biol Reprod. 1995 Apr;52(4):947-53 [PMID: 7780016]
  27. Bioinformatics. 2008 Feb 15;24(4):581-3 [PMID: 17766271]
  28. Cladistics. 2008 Aug;24(4):563-590 [PMID: 34879635]
  29. PLoS One. 2007 Jun 13;2(6):e522 [PMID: 17565375]
  30. Bioinformatics. 2003 Aug 12;19(12):1572-4 [PMID: 12912839]
  31. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1490-5 [PMID: 21220334]
  32. Evolution. 2005 May;59(5):1060-84 [PMID: 16136805]
  33. J Morphol. 2005 Sep;265(3):271-90 [PMID: 16037955]
  34. Am Nat. 2006 Jun;167(6):808-25 [PMID: 16685633]
  35. Biol Rev Camb Philos Soc. 2002 May;77(2):183-209 [PMID: 12056746]
  36. J Evol Biol. 2009 Nov;22(11):2146-56 [PMID: 19732260]
  37. Proc Biol Sci. 1991 Mar 22;243(1308):181-5 [PMID: 1675796]
  38. Reproduction. 2008 Mar;135(3):275-83 [PMID: 18299420]
  39. Syst Biol. 2003 Oct;52(5):674-83 [PMID: 14530134]
  40. Evolution. 1999 Aug;53(4):1165-1179 [PMID: 28565530]
  41. PLoS One. 2007 Jan 24;2(1):e170 [PMID: 17245446]
  42. Science. 2002 Nov 8;298(5596):1230-3 [PMID: 12424377]
  43. Trends Ecol Evol. 2005 Jan;20(1):46-53 [PMID: 16701340]
  44. Evolution. 1997 Dec;51(6):1699-1711 [PMID: 28565128]

Grants

  1. K12 GM000708/NIGMS NIH HHS
  2. P20 RR016448/NCRR NIH HHS
  3. P20 RR016454/NCRR NIH HHS

MeSH Term

Animals
Bayes Theorem
Biological Evolution
Coleoptera
Male
Markov Chains
Models, Genetic
Monte Carlo Method
Phylogeny
Spermatozoa

Word Cloud

Created with Highcharts 10.0.0spermdiversificationheadconjugationSpermevolutionarydivingbeetleslengthshapeheteromorphismmorphologicalsexualselectionsubjecttraitssubsequentmodificationevolutionDytiscidaefoundformsrecurrencedifferentpathwaysdisplayremarkablediversityamongevencloselyrelatedspeciespatternwidelyattributedpostcopulatorySurprisinglystudiesusedphylogeneticanalysesdiscerndetailsornamentsarmamentsoriginsnovelparticularlypoorlyunderstoodinvestigaterevealingdramaticflagellumpresencepresence/typeunusualtraittwounitemotilitytransportancestralconditionthreeexhibitingvaryingdegreeslossconvergenceevolvesignificantlycorrelatedmannerconsistentmechanismsalignmentbindingrequiredstudyrevealschanneledalongparticularieconjugateformyetconsiderablewithinConvergencecomplex

Similar Articles

Cited By