Genomics in eels--towards aquaculture and biology.

Yuki Minegishi, Christiaan V Henkel, Ron P Dirks, Guido E E J M van den Thillart
Author Information
  1. Yuki Minegishi: Institute of Biology-Leiden, Leiden University, Leiden, The Netherlands. y.minegishi@biology.leidenuniv.nl

Abstract

Freshwater eels (genus Anguilla), especially the species inhabiting the temperate areas such as the European, American and Japanese eels, are important aquaculture species. Although artificial reproduction has been attempted since the 1930s and large numbers of studies have been conducted, it has not yet fully succeeded. Problems in eel artificial breeding are highly diverse, for instance, lack of basic information about reproduction in nature, no appropriate food for larvae, high mortality, and high individual variation in adults in response to maturation induction. Over the last decade, genomic data have been obtained for a variety of aquatic organisms. Recent technological advances in sequencing and computation now enable the accumulation of genomic information even for non-model species. The draft genome of the European eel Anguilla Anguilla has been recently determined using Illumina technology and transcriptomic data based on next generation sequencing have been emerging. Extensive genomic information will facilitate many aspects of the artificial reproduction of eels. Here, we review the progress in genome-wide studies of eels, including additional analysis of the European eel genome data, and discuss future directions and implications of genomic data for aquaculture.

References

  1. Mol Ecol. 2010 May;19(10):2025-37 [PMID: 20406382]
  2. Biochim Biophys Acta. 2011 Mar;1812(3):346-52 [PMID: 20920580]
  3. Gen Comp Endocrinol. 2006 Oct;149(1):10-20 [PMID: 16753163]
  4. Genome Biol Evol. 2011;3:424-42 [PMID: 21551351]
  5. Mol Genet Genomics. 2011 Jul;286(1):67-79 [PMID: 21626198]
  6. Mar Genomics. 2010 Sep-Dec;3(3-4):179-91 [PMID: 21798212]
  7. PLoS One. 2011 Jan 31;6(1):e16599 [PMID: 21304996]
  8. BMC Dev Biol. 2011 Mar 13;11:16 [PMID: 21396126]
  9. BMC Genomics. 2011 Apr 14;12:188 [PMID: 21492448]
  10. Genetics. 2008 Feb;178(2):1109-15 [PMID: 18245341]
  11. BMC Genomics. 2008 Oct 30;9:508 [PMID: 18973667]
  12. Gene. 2012 Dec 15;511(2):195-201 [PMID: 23026207]
  13. BMC Genomics. 2008 Nov 17;9:545 [PMID: 19014685]
  14. BMC Genomics. 2011 Jun 14;12:314 [PMID: 21672188]
  15. Mol Phylogenet Evol. 2003 Jan;26(1):121-38 [PMID: 12470944]
  16. Evolution. 1990 Aug;44(5):1254-1262 [PMID: 28563898]
  17. Fish Physiol Biochem. 2005 Apr;31(2-3):193-9 [PMID: 20035458]
  18. Mol Phylogenet Evol. 2004 Jul;32(1):274-86 [PMID: 15186813]
  19. Mol Ecol. 2011 Sep;20(17):3499-502 [PMID: 21991593]
  20. Nature. 2006 Feb 23;439(7079):929 [PMID: 16495988]
  21. Nature. 2007 Jun 7;447(7145):714-9 [PMID: 17554307]
  22. Evolution. 2011 Dec;65(12):3413-27 [PMID: 22133215]
  23. Heredity (Edinb). 2010 Dec;105(6):562-73 [PMID: 20234386]
  24. J Fish Biol. 2009 Jun;74(9):1833-52 [PMID: 20735675]
  25. J Hered. 2001 Jan-Feb;92(1):16-22 [PMID: 11336224]
  26. Physiol Genomics. 2007 Nov 14;31(3):385-401 [PMID: 17666525]
  27. PLoS One. 2012;7(2):e32231 [PMID: 22384188]
  28. Genet Mol Biol. 2010 Jul;33(3):578-82 [PMID: 21637435]
  29. Gen Comp Endocrinol. 2007 Oct-Dec;154(1-3):161-73 [PMID: 17597622]
  30. J Exp Zool. 2001 Feb 1;289(2):119-29 [PMID: 11169499]
  31. Genome Biol. 2010;11(9):403 [PMID: 20887641]
  32. Gen Comp Endocrinol. 2007 Jun-Jul;152(2-3):274-80 [PMID: 17324422]
  33. Nat Commun. 2011 Feb 01;2:179 [PMID: 21285957]
  34. Gene. 2002 Jul 10;294(1-2):45-53 [PMID: 12234666]
  35. Nat Rev Genet. 2011 Jun 17;12(7):499-510 [PMID: 21681211]
  36. BMC Genet. 2010 Jul 07;11:63 [PMID: 20609225]
  37. J Exp Biol. 2003 Feb;206(Pt 4):687-92 [PMID: 12517986]
  38. J Biomed Biotechnol. 2011;2011:329025 [PMID: 21049003]
  39. PLoS Genet. 2010 Feb 26;6(2):e1000862 [PMID: 20195501]
  40. Genome Res. 2011 Aug;21(8):1328-38 [PMID: 21555364]
  41. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  42. J Exp Zool B Mol Dev Evol. 2010 Mar 15;314(2):135-47 [PMID: 19670462]
  43. Anim Genet. 2010 Aug;41(4):337-45 [PMID: 20028379]
  44. C R Hebd Seances Acad Sci. 1964 Oct 28;259:2907-10 [PMID: 14228193]
  45. J Hered. 2005 Mar-Apr;96(2):97-107 [PMID: 15653562]
  46. Science. 2002 Aug 23;297(5585):1301-10 [PMID: 12142439]
  47. Genome Res. 2011 Apr;21(4):610-7 [PMID: 21233398]
  48. Mol Ecol. 2006 Jun;15(7):1903-16 [PMID: 16689906]
  49. Heredity (Edinb). 2011 Jun;106(6):920-6 [PMID: 21048672]
  50. J Hered. 2006 Jan-Feb;97(1):74-80 [PMID: 16407529]
  51. BMC Genomics. 2010 Nov 16;11:635 [PMID: 21080939]

MeSH Term

Animals
Aquaculture
Breeding
Eels
Gene Expression Profiling
Genomics
High-Throughput Nucleotide Sequencing

Word Cloud

Created with Highcharts 10.0.0eelsgenomicdataspeciesEuropeanaquacultureartificialreproductioneelinformationAnguillastudieshighsequencinggenomeFreshwatergenusespeciallyinhabitingtemperateareasAmericanJapaneseimportantAlthoughattemptedsince1930slargenumbersconductedyetfullysucceededProblemsbreedinghighlydiverseinstancelackbasicnatureappropriatefoodlarvaemortalityindividualvariationadultsresponsematurationinductionlastdecadeobtainedvarietyaquaticorganismsRecenttechnologicaladvancescomputationnowenableaccumulationevennon-modeldraftanguillarecentlydeterminedusingIlluminatechnologytranscriptomicbasednextgenerationemergingExtensivewillfacilitatemanyaspectsreviewprogressgenome-wideincludingadditionalanalysisdiscussfuturedirectionsimplicationsGenomicseels--towardsbiology

Similar Articles

Cited By