Cyber-T web server: differential analysis of high-throughput data.

Matthew A Kayala, Pierre Baldi
Author Information
  1. Matthew A Kayala: Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA.

Abstract

The Bayesian regularization method for high-throughput differential analysis, described in Baldi and Long (A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001: 17: 509-519) and implemented in the Cyber-T web server, is one of the most widely validated. Cyber-T implements a t-test using a Bayesian framework to compute a regularized variance of the measurements associated with each probe under each condition. This regularized estimate is derived by flexibly combining the empirical measurements with a prior, or background, derived from pooling measurements associated with probes in the same neighborhood. This approach flexibly addresses problems associated with low replication levels and technology biases, not only for DNA microarrays, but also for other technologies, such as protein arrays, quantitative mass spectrometry and next-generation sequencing (RNA-seq). Here we present an update to the Cyber-T web server, incorporating several useful new additions and improvements. Several preprocessing data normalization options including logarithmic and (Variance Stabilizing Normalization) VSN transforms are included. To augment two-sample t-tests, a one-way analysis of variance is implemented. Several methods for multiple tests correction, including standard frequentist methods and a probabilistic mixture model treatment, are available. Diagnostic plots allow visual assessment of the results. The web server provides comprehensive documentation and example data sets. The Cyber-T web server, with R source code and data sets, is publicly available at http://cybert.ics.uci.edu/.

References

  1. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  2. Bioinformatics. 2002;18 Suppl 1:S96-104 [PMID: 12169536]
  3. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W581-6 [PMID: 19435879]
  4. BMC Bioinformatics. 2010 May 27;11:285 [PMID: 20507584]
  5. BMC Bioinformatics. 2009 Feb 03;10:45 [PMID: 19192265]
  6. Genome Biol. 2010;11(8):R86 [PMID: 20738864]
  7. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6958-63 [PMID: 20351286]
  8. Mol Cell Proteomics. 2010 Aug;9(8):1650-65 [PMID: 20445003]
  9. Bioinformatics. 2001 Jun;17(6):509-19 [PMID: 11395427]
  10. Genome Biol. 2005;6(2):R16 [PMID: 15693945]
  11. Science. 2004 Oct 22;306(5696):636-40 [PMID: 15499007]
  12. Nucleic Acids Res. 2009 Oct;37(18):e123 [PMID: 19620212]
  13. BMC Bioinformatics. 2006 Feb 08;7:59 [PMID: 16466568]
  14. Nat Rev Genet. 2006 Jan;7(1):55-65 [PMID: 16369572]
  15. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W348-51 [PMID: 20551130]
  16. Bioinformatics. 2003 May 22;19(8):966-72 [PMID: 12761059]
  17. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W498-503 [PMID: 16845058]
  18. J Biotechnol. 2009 Mar 10;140(1-2):18-26 [PMID: 19297690]
  19. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  20. Trends Genet. 2006 Feb;22(2):84-9 [PMID: 16377025]
  21. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  22. J Biol Chem. 2002 Oct 25;277(43):40309-23 [PMID: 12130640]
  23. Genome Biol. 2011 Jul 28;12(7):R69 [PMID: 21797991]
  24. Bioinformatics. 2006 Jul 15;22(14):1760-6 [PMID: 16644788]
  25. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]

Grants

  1. 5T15LM007743/NLM NIH HHS
  2. LM010235-01A1/NLM NIH HHS

MeSH Term

Bayes Theorem
High-Throughput Nucleotide Sequencing
Internet
Mass Spectrometry
Oligonucleotide Array Sequence Analysis
Protein Array Analysis
Sequence Analysis, RNA
Software

Word Cloud

Created with Highcharts 10.0.0Cyber-TwebanalysisserverdataBayesianregularizedmeasurementsassociatedhigh-throughputdifferentialframeworkt-testimplementedvariancederivedflexiblySeveralincludingmethodsavailablesetsregularizationmethoddescribedBaldiLongmicroarrayexpressiondata:statisticalinferencesgenechangesBioinformatics2001:17:509-519onewidelyvalidatedimplementsusingcomputeprobeconditionestimatecombiningempiricalpriorbackgroundpoolingprobesneighborhoodapproachaddressesproblemslowreplicationlevelstechnologybiasesDNAmicroarraysalsotechnologiesproteinarraysquantitativemassspectrometrynext-generationsequencingRNA-seqpresentupdateincorporatingseveralusefulnewadditionsimprovementspreprocessingnormalizationoptionslogarithmicVarianceStabilizingNormalizationVSNtransformsincludedaugmenttwo-samplet-testsone-waymultipletestscorrectionstandardfrequentistprobabilisticmixturemodeltreatmentDiagnosticplotsallowvisualassessmentresultsprovidescomprehensivedocumentationexampleRsourcecodepubliclyhttp://cyberticsuciedu/server:

Similar Articles

Cited By