The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation.

N I Nikolaev, Y Liu, H Hussein, D J Williams
Author Information
  1. N I Nikolaev: Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.

Abstract

In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2-8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s(-2) and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s(-2), peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s(-2), peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage.

References

  1. Anticancer Res. 2011 Jun;31(6):2283-90 [PMID: 21737653]
  2. Crit Rev Biotechnol. 2001;21(2):67-110 [PMID: 11451047]
  3. J Biol Chem. 2011 Nov 11;286(45):39497-509 [PMID: 21949130]
  4. Tissue Eng Part C Methods. 2009 Dec;15(4):669-79 [PMID: 19257810]
  5. Transplantation. 2001 Sep 15;72(5):798-804 [PMID: 11571440]
  6. Tissue Eng. 2006 Jun;12(6):1711-9 [PMID: 16846365]
  7. Transplant Proc. 2010 Jun;42(5):1563-8 [PMID: 20620475]
  8. Eur Cell Mater. 2011 Jul 06;22:12-25 [PMID: 21732279]
  9. Biophys J. 2011 Aug 3;101(3):585-93 [PMID: 21806926]
  10. FASEB J. 1999 Jan;13(1):155-68 [PMID: 9872940]
  11. Vox Sang. 2010 Aug 1;99(2):168-73 [PMID: 20230598]
  12. Kidney Int. 1998 Dec;54(6):1955-66 [PMID: 9853260]
  13. Yonsei Med J. 2011 Nov;52(6):999-1007 [PMID: 22028166]
  14. Transfusion. 2009 Aug;49(8):1738-46 [PMID: 19413727]
  15. Cell Transplant. 2009;18(10):1111-21 [PMID: 19650972]
  16. Cryobiology. 2001 May;42(3):190-5 [PMID: 11578118]
  17. Ann N Y Acad Sci. 2010 Feb;1188:25-31 [PMID: 20201882]
  18. Cytotechnology. 2011 Oct;63(5):445-60 [PMID: 21785843]
  19. Cytotherapy. 2006;8(2):158-65 [PMID: 16698689]
  20. J Vasc Surg. 2005 May;41(5):869-80 [PMID: 15886673]
  21. Eur Cell Mater. 2011 Jul 06;22:26-42 [PMID: 21732280]
  22. Cytometry. 2001 May 1;44(1):65-72 [PMID: 11309810]
  23. J Vasc Surg. 2007 Sep;46(3):557-564 [PMID: 17826245]
  24. PLoS One. 2012;7(2):e30965 [PMID: 22359557]
  25. Tissue Eng Part C Methods. 2011 Jul;17(7):745-55 [PMID: 21410311]
  26. Tissue Eng Part C Methods. 2009 Sep;15(3):373-86 [PMID: 19196129]
  27. Biopreserv Biobank. 2009 Mar;7(1):3-12 [PMID: 24845765]
  28. Transfusion. 2011 Jun;51(6):1284-90 [PMID: 21133927]
  29. J Biol Chem. 1994 May 20;269(20):14768-75 [PMID: 8182082]
  30. Cytotherapy. 2011 Feb;13(2):201-13 [PMID: 20795760]
  31. FEBS J. 2009 Jan;276(1):286-302 [PMID: 19054067]
  32. Biomaterials. 2012 Feb;33(4):1052-64 [PMID: 22056755]
  33. J Biol Chem. 2010 Jan 1;285(1):30-42 [PMID: 19889638]
  34. Transfusion. 2000 Jun;40(6):693-6 [PMID: 10864990]
  35. Tissue Eng. 2004 Nov-Dec;10(11-12):1662-71 [PMID: 15684675]
  36. Bone. 2011 Aug;49(2):295-303 [PMID: 21550433]
  37. Cytotechnology. 2002 Sep;39(3):125-30 [PMID: 19003304]
  38. J Biomech. 2003 Jan;36(1):73-80 [PMID: 12485640]
  39. Tissue Eng Part C Methods. 2012 Jun;18(6):453-63 [PMID: 22196031]
  40. Stem Cells. 2006 Apr;24(4):928-35 [PMID: 16306150]
  41. J Immunol Methods. 1995 Jul 17;184(1):39-51 [PMID: 7622868]
  42. J Tissue Eng Regen Med. 2008 Oct;2(7):436-44 [PMID: 18720444]
  43. Cryobiology. 2011 Aug;63(1):46-55 [PMID: 21549109]
  44. J R Soc Interface. 2011 Dec 7;8(65):1736-47 [PMID: 21613288]
  45. Transfusion. 2011 Jan;51(1):137-47 [PMID: 20609197]
  46. Tissue Eng Part A. 2011 Dec;17(23-24):3085-93 [PMID: 21870950]
  47. Cytotechnology. 2008 Oct;58(2):69-75 [PMID: 19002767]

MeSH Term

Cell Survival
Cryopreservation
Flow Cytometry
Humans
Immunophenotyping
Mesenchymal Stem Cells
Vibration

Word Cloud

Created with Highcharts 10.0.0coldstorageHzvibrationpeakcellcellsaccelerationdisplacementhMSCsviabilityms-2mm25CD29CD44alsoeffectsstudymechanicaldamageinducedhumanmesenchymalstem501401510deathCellCD105increasedsensitivitycurrenthypothermicstored2-8°Cquantifiedmeasuringtotalnumberexposure4720severaldurationsquantifyadditiontrypanblueexclusionmethodcombinationannexinV-FITCpropidiumiodideappliedunderstandmodegranularitypanelsurfacemarkersstemnessincludingCD166evaluatedconditionfoundsensitivemoderateVibrationexpressionshowedalonecauseddecreaseespecially48hattenuatedexpressionslikelyconsequencemembraneruptureowingnecrosisdifferentvibrationswithinsystemduecombinedeffectlongerdurationsusceptibleindicatingcouplingconditionsrepresentativetransportation

Similar Articles

Cited By