Origin of long-lived coherences in light-harvesting complexes.

Niklas Christensson, Harald F Kauffmann, Tõnu Pullerits, Tomáš Mančal
Author Information
  1. Niklas Christensson: Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria.

Abstract

A vibronic exciton model is applied to explain the long-lived oscillatory features in the two-dimensional (2D) electronic spectra of the Fenna-Matthews-Olson (FMO) complex. Using experimentally determined parameters and uncorrelated site energy fluctuations, the model predicts oscillations with dephasing times of 1.3 ps at 77 K, which is in a good agreement with the experimental results. These long-lived oscillations originate from the coherent superposition of vibronic exciton states with dominant contributions from vibrational excitations on the same pigment. The oscillations obtain a large amplitude due to excitonic intensity borrowing, which gives transitions with strong vibronic character a significant intensity despite the small Huang-Rhys factor. Purely electronic coherences are found to decay on a 200 fs time scale.

References

  1. Biophys J. 2006 Oct 15;91(8):2778-97 [PMID: 16861264]
  2. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  3. J Phys Chem B. 2009 Dec 24;113(51):16291-5 [PMID: 20014871]
  4. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20908-12 [PMID: 22167798]
  5. J Chem Phys. 2011 May 7;134(17):174504 [PMID: 21548696]
  6. Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17255-60 [PMID: 19815512]
  7. J Chem Phys. 2009 Apr 7;130(13):134318 [PMID: 19355743]
  8. Nature. 2010 Feb 4;463(7281):644-7 [PMID: 20130647]
  9. J Phys Chem B. 2011 May 12;115(18):5383-91 [PMID: 21329370]
  10. Faraday Discuss. 2011;150:459-69; discussion 505-32 [PMID: 22457961]
  11. Nature. 2007 Apr 12;446(7137):782-6 [PMID: 17429397]
  12. Faraday Discuss. 2011;153:93-104; discussion 189-212 [PMID: 22452075]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041926 [PMID: 22181194]
  14. J Chem Phys. 2011 Jan 14;134(2):024506 [PMID: 21241119]
  15. J Chem Phys. 2009 Jul 28;131(4):044909 [PMID: 19655921]
  16. J Am Chem Soc. 2003 Oct 1;125(39):11810-1 [PMID: 14505390]
  17. Photosynth Res. 2009 May;100(2):79-87 [PMID: 19437128]
  18. Biophys J. 2012 Feb 8;102(3):649-60 [PMID: 22325289]
  19. J Chem Phys. 2012 Apr 21;136(15):155102 [PMID: 22519353]
  20. J Phys Chem B. 2011 Feb 3;115(4):758-64 [PMID: 21142050]
  21. J Phys Chem B. 2011 Feb 17;115(6):1347-56 [PMID: 21268650]
  22. J Chem Phys. 2011 May 21;134(19):194508 [PMID: 21599074]

MeSH Term

Bacterial Proteins
Chlorobium
Electrons
Light-Harvesting Protein Complexes
Models, Chemical
Models, Molecular
Quantum Theory

Chemicals

Bacterial Proteins
FMO bacteriochlorophyll protein, Bacteria
Light-Harvesting Protein Complexes

Word Cloud

Created with Highcharts 10.0.0vibroniclong-livedoscillationsexcitonmodelelectronicintensitycoherencesappliedexplainoscillatoryfeaturestwo-dimensional2DspectraFenna-Matthews-OlsonFMOcomplexUsingexperimentallydeterminedparametersuncorrelatedsiteenergyfluctuationspredictsdephasingtimes13ps77KgoodagreementexperimentalresultsoriginatecoherentsuperpositionstatesdominantcontributionsvibrationalexcitationspigmentobtainlargeamplitudedueexcitonicborrowinggivestransitionsstrongcharactersignificantdespitesmallHuang-RhysfactorPurelyfounddecay200fstimescaleOriginlight-harvestingcomplexes

Similar Articles

Cited By