Legionella pneumophila pathogenesis in the Galleria mellonella infection model.

Clare R Harding, Gunnar N Schroeder, Stuart Reynolds, Artemis Kosta, James W Collins, Aurélie Mousnier, Gad Frankel
Author Information
  1. Clare R Harding: Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom.

Abstract

Legionella pneumophila is a facultative intracellular human pathogen and the etiological agent of severe pneumonia known as Legionnaires' disease. Its virulence depends on protein secretion systems, in particular, the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication-permissive vacuole in macrophages. The analysis of the role of these systems and their substrates for pathogenesis requires easy-to-use models which approximate human infection. We examined the effectiveness of the larvae of the wax moth Galleria mellonella as a new model for L. pneumophila infection. We found that the L. pneumophila strains 130b, Paris, and JR32 caused mortality of the G. mellonella larvae that was strain, infectious dose, growth phase, and T4SS dependent. Wild-type L. pneumophila persisted and replicated within the larvae, whereas T4SS mutants were rapidly cleared. L. pneumophila strain Lp02, which is attenuated in the absence of thymidine but has a functional T4SS, resisted clearance in G. mellonella up to 18 h postinfection without inducing mortality. Immunofluorescence and transmission electron microscopy revealed that L. pneumophila resided within insect hemocytes in a vacuole that ultrastructurally resembled the Legionella-containing vacuole (LCV) observed in macrophages. The vacuole was decorated with the T4SS effector and LCV marker SidC. Infection caused severe damage to the insect organs and triggered immune responses, including activation of the phenoloxidase cascade leading to melanization, nodule formation, and upregulation of antimicrobial peptides. Taken together, these results suggest that G. mellonella provides an effective model to investigate the interaction between L. pneumophila and the host.

References

  1. Annu Rev Immunol. 2007;25:697-743 [PMID: 17201680]
  2. Insect Biochem Mol Biol. 2002 Oct;32(10):1295-309 [PMID: 12225920]
  3. Dev Comp Immunol. 2006;30(12):1099-107 [PMID: 16620974]
  4. Infect Immun. 2000 May;68(5):2939-47 [PMID: 10768992]
  5. Environ Microbiol. 2007 Mar;9(3):563-75 [PMID: 17298357]
  6. PLoS Pathog. 2012 Jan;8(1):e1002459 [PMID: 22241989]
  7. Nat Genet. 2004 Nov;36(11):1165-73 [PMID: 15467720]
  8. Biochim Biophys Acta. 2008 Oct;1783(10):2013-9 [PMID: 18652851]
  9. Microbiology (Reading). 2003 Mar;149(Pt 3):631-641 [PMID: 12634332]
  10. Appl Environ Microbiol. 2005 Jan;71(1):20-8 [PMID: 15640165]
  11. Cell Microbiol. 2010 Mar;12(3):343-61 [PMID: 19863556]
  12. PLoS Pathog. 2010 Dec 02;6(12):e1001216 [PMID: 21151961]
  13. Immunol Rev. 2004 Apr;198:116-26 [PMID: 15199959]
  14. Infect Immun. 2005 Sep;73(9):5514-23 [PMID: 16113267]
  15. Future Microbiol. 2009 Sep;4(7):797-805 [PMID: 19722835]
  16. PLoS One. 2011 Mar 09;6(3):e17638 [PMID: 21408005]
  17. J Hosp Infect. 1986 Sep;8(2):109-15 [PMID: 2876026]
  18. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1669-74 [PMID: 9465074]
  19. J Bacteriol. 2000 Jul;182(13):3843-5 [PMID: 10851003]
  20. Mol Microbiol. 1993 Jan;7(1):7-19 [PMID: 8382332]
  21. Mol Microbiol. 1999 Aug;33(4):721-31 [PMID: 10447882]
  22. Cell Microbiol. 2011 Dec;13(12):1870-80 [PMID: 21981078]
  23. Appl Environ Microbiol. 1996 Jun;62(6):2022-8 [PMID: 8787400]
  24. Mycopathologia. 2006 Jun;161(6):377-84 [PMID: 16761185]
  25. Microbiology (Reading). 2009 May;155(Pt 5):1516-1522 [PMID: 19383703]
  26. Cell Microbiol. 2007 Aug;9(8):1922-35 [PMID: 17388784]
  27. J Exp Med. 1983 Dec 1;158(6):2108-26 [PMID: 6644240]
  28. Lancet. 1981 Dec 19-26;2(8260-61):1389-90 [PMID: 6118761]
  29. BMC Genomics. 2011 Jun 11;12:308 [PMID: 21663692]
  30. FEMS Microbiol Rev. 2004 Feb;28(1):101-12 [PMID: 14975532]
  31. J Clin Microbiol. 2002 Apr;40(4):1352-62 [PMID: 11923356]
  32. Microbes Infect. 2008 May;10(6):628-34 [PMID: 18457977]
  33. Microbiology (Reading). 2010 Nov;156(Pt 11):3456-3468 [PMID: 20688820]
  34. Front Microbiol. 2011 Jun 27;2:136 [PMID: 21743810]
  35. N Engl J Med. 1977 Dec 1;297(22):1189-97 [PMID: 335244]
  36. PLoS Pathog. 2006 May;2(5):e46 [PMID: 16710455]
  37. Virulence. 2010 Nov-Dec;1(6):475-82 [PMID: 21178491]
  38. J Infect Dis. 2010 Mar;201(5):776-82 [PMID: 20113177]
  39. Am J Pathol. 1994 Dec;145(6):1537-46 [PMID: 7992856]
  40. Infect Immun. 2007 Jun;75(6):2903-13 [PMID: 17420236]
  41. Curr Biol. 2003 Jan 8;13(1):27-36 [PMID: 12526741]
  42. J Clin Pathol. 1980 Dec;33(12):1179-83 [PMID: 7451664]
  43. J Insect Physiol. 2011 Feb;57(2):231-45 [PMID: 21078327]
  44. Cell Signal. 2009 Feb;21(2):186-95 [PMID: 18790716]
  45. J Bacteriol. 2010 Nov;192(22):6001-16 [PMID: 20833813]
  46. FEMS Microbiol Lett. 2006 Oct;263(1):1-9 [PMID: 16958844]
  47. Infect Immun. 1993 Dec;61(12):5361-73 [PMID: 8225610]
  48. Insect Mol Biol. 2012 Apr;21(2):247-56 [PMID: 22229544]
  49. Bioessays. 1997 Nov;19(11):1019-26 [PMID: 9394624]
  50. Mol Microbiol. 1998 Oct;30(1):197-208 [PMID: 9786196]
  51. Biochem Biophys Res Commun. 2004 Apr 30;317(2):654-61 [PMID: 15063808]
  52. Appl Environ Microbiol. 2010 Jan;76(1):310-7 [PMID: 19897755]
  53. Infect Immun. 1995 Sep;63(9):3609-20 [PMID: 7642298]
  54. Virulence. 2011 Mar-Apr;2(2):111-9 [PMID: 21258213]

Grants

  1. G1001729/Medical Research Council
  2. /Wellcome Trust
  3. /Biotechnology and Biological Sciences Research Council

MeSH Term

Animals
Gene Expression Profiling
Gene Expression Regulation
Hemocytes
Immunity, Innate
Insect Proteins
Kinetics
Larva
Legionella pneumophila
Moths
RNA, Messenger
Virulence

Chemicals

Insect Proteins
RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0pneumophilaLT4SSmellonellavacuoleinfectionlarvaemodelGLegionellahumanseveresecretionsystemsmacrophagespathogenesisGalleriacausedmortalitystrainwithininsectLCVfacultativeintracellularpathogenetiologicalagentpneumoniaknownLegionnaires'diseasevirulencedependsproteinparticularDot/IcmtypeIVsystemessentialestablishreplication-permissiveanalysisrolesubstratesrequireseasy-to-usemodelsapproximateexaminedeffectivenesswaxmothnewfoundstrains130bParisJR32infectiousdosegrowthphasedependentWild-typepersistedreplicatedwhereasmutantsrapidlyclearedLp02attenuatedabsencethymidinefunctionalresistedclearance18hpostinfectionwithoutinducingImmunofluorescencetransmissionelectronmicroscopyrevealedresidedhemocytesultrastructurallyresembledLegionella-containingobserveddecoratedeffectormarkerSidCInfectiondamageorganstriggeredimmuneresponsesincludingactivationphenoloxidasecascadeleadingmelanizationnoduleformationupregulationantimicrobialpeptidesTakentogetherresultssuggestprovideseffectiveinvestigateinteractionhost

Similar Articles

Cited By