Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins.

Katarzyna Bozek, Emi E Nakayama, Ken Kono, Tatsuo Shioda
Author Information
  1. Katarzyna Bozek: Max Planck Institute for Informatics Saarbrücken, Germany.

Abstract

Human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus isolated from a macaque monkey (SIVmac) are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm). Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh) monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239) is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5). As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

Keywords

References

  1. Bioinformatics. 2007 Jan 15;23(2):e99-103 [PMID: 17237112]
  2. Int J Mol Med. 2003 May;11(5):641-4 [PMID: 12684704]
  3. Science. 2000 Jan 28;287(5453):607-14 [PMID: 10649986]
  4. J Gen Virol. 1995 Nov;76 ( Pt 11):2723-30 [PMID: 7595379]
  5. Virology. 2008 Apr 10;373(2):447-56 [PMID: 18201746]
  6. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41 [PMID: 11517324]
  7. Nat Struct Biol. 2002 Jul;9(7):537-43 [PMID: 12032547]
  8. Nature. 1999 Feb 4;397(6718):436-41 [PMID: 9989410]
  9. Virology. 1990 Oct;178(2):527-34 [PMID: 2120848]
  10. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14116-21 [PMID: 12381794]
  11. J Mol Biol. 1973 Sep 15;79(2):351-71 [PMID: 4760134]
  12. EMBO J. 2001 May 1;20(9):2140-51 [PMID: 11331580]
  13. Retrovirology. 2005 Jun 20;2:40 [PMID: 15967037]
  14. Virology. 1991 Sep;184(1):219-26 [PMID: 1678564]
  15. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):534-9 [PMID: 21187419]
  16. Clin Immunol. 1999 Jun;91(3):321-9 [PMID: 10370378]
  17. Biophys J. 2002 Sep;83(3):1341-7 [PMID: 12202359]
  18. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W368-71 [PMID: 15980491]
  19. J Virol. 2005 Sep;79(18):11580-7 [PMID: 16140735]
  20. Clin Microbiol Rev. 2006 Oct;19(4):728-62 [PMID: 17041142]
  21. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5514-9 [PMID: 16540544]
  22. Virology. 1996 May 15;219(2):485-8 [PMID: 8638416]
  23. Curr Protoc Protein Sci. 2007 Nov;Chapter 2:Unit 2.9 [PMID: 18429317]
  24. J Virol. 2007 Jul;81(13):7280-5 [PMID: 17475650]
  25. Virology. 1996 Apr 15;218(2):382-8 [PMID: 8610465]
  26. AIDS Res Hum Retroviruses. 1998 Jan 1;14(1):79-82 [PMID: 9453254]
  27. J Virol. 2003 Jan;77(1):77-83 [PMID: 12477812]
  28. J Virol. 2005 Jul;79(14):8870-7 [PMID: 15994780]
  29. Retrovirology. 2010 Sep 08;7:72 [PMID: 20825647]
  30. Nature. 2004 Feb 26;427(6977):848-53 [PMID: 14985764]

Word Cloud

Created with Highcharts 10.0.0HIV-2capsidTRIM5αimmunodeficiencyvirusSIVmac239potentialSIVmacRhGH123simianrestrictionproteinelectrostaticsurfacetype2isolatedmacaquemonkeyshowrhesusstrainsensitivitydeterminantsElectrostaticsiteoneproteinspredominantlyL4/5HumanassumedoriginatedsootymangabeySIVsmDespiteclosesimilaritygenomestructuredifferentsensitivitieshostfactorretrovirusesreplicationstrainspotentlyrestricted239ViraldeterminantdifferentialmutantcarryingevadedTRIM5α-mediatedHowevermolecularmechanismunknownprotein-bindingpropertiesregulatingprotein-proteininteractionsstudyinvestigatedinteractionAlthoughshare87%aminoacididentityobservedlargedifferencetwomoleculesmoleculepositivenegativeloopα-helices45majorvirusespresentresultssuggestbindingmaycomplementaritychargedistributionhumanAPBSSAS

Similar Articles

Cited By