New meta-analysis tools reveal common transcriptional regulatory basis for multiple determinants of behavior.

Seth A Ament, Charles A Blatti, Cedric Alaux, Marsha M Wheeler, Amy L Toth, Yves Le Conte, Greg J Hunt, Ernesto Guzmán-Novoa, Gloria Degrandi-Hoffman, Jose Luis Uribe-Rubio, Gro V Amdam, Robert E Page, Sandra L Rodriguez-Zas, Gene E Robinson, Saurabh Sinha
Author Information
  1. Seth A Ament: Neuroscience Program, Department of Computer Science, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Abstract

A fundamental problem in meta-analysis is how to systematically combine information from multiple statistical tests to rigorously evaluate a single overarching hypothesis. This problem occurs in systems biology when attempting to map genomic attributes to complex phenotypes such as behavior. Behavior and other complex phenotypes are influenced by intrinsic and environmental determinants that act on the transcriptome, but little is known about how these determinants interact at the molecular level. We developed an informatic technique that identifies statistically significant meta-associations between gene expression patterns and transcription factor combinations. Deploying this technique for brain transcriptome profiles from ca. 400 individual bees, we show that diverse determinants of behavior rely on shared combinations of transcription factors. These relationships were revealed only when we considered complex and variable regulatory rules, suggesting that these shared transcription factors are used in distinct ways by different determinants. This regulatory code would have been missed by traditional gene coexpression or cis-regulatory analytic methods. We expect that our meta-analysis tools will be useful for a broad array of problems in systems biology and other fields.

References

  1. BMC Bioinformatics. 2008 Jan 28;9:63 [PMID: 18226260]
  2. PLoS Biol. 2010 Aug 17;8(8): [PMID: 20808951]
  3. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  4. Nucleic Acids Res. 2009 Apr;37(5):1566-79 [PMID: 19151090]
  5. Genome Res. 2008 Mar;18(3):477-88 [PMID: 18256240]
  6. J Evol Biol. 2005 Sep;18(5):1368-73 [PMID: 16135132]
  7. Nat Genet. 2004 Oct;36(10):1090-8 [PMID: 15448693]
  8. Bioinformatics. 1998;14(1):48-54 [PMID: 9520501]
  9. Dev Genet. 1998;23(1):1-10 [PMID: 9706689]
  10. Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14519-25 [PMID: 14573707]
  11. Bioinformatics. 2006 May 1;22(9):1122-9 [PMID: 16500941]
  12. Nat Methods. 2008 Apr;5(4):347-53 [PMID: 18311145]
  13. Cancer Res. 2002 Aug 1;62(15):4427-33 [PMID: 12154050]
  14. Science. 2003 Oct 10;302(5643):296-9 [PMID: 14551438]
  15. Genes Brain Behav. 2009 Apr;8(3):309-19 [PMID: 19220482]
  16. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2981-6 [PMID: 14973197]
  17. BMC Bioinformatics. 2010 Apr 01;11:165 [PMID: 20356413]
  18. Bioinformatics. 2009 Dec 15;25(24):3267-74 [PMID: 19825796]
  19. Science. 2008 Nov 7;322(5903):896-900 [PMID: 18988841]
  20. PLoS Genet. 2012;8(3):e1002596 [PMID: 22479195]
  21. Genome Biol. 2006;7(7):R53 [PMID: 16827941]
  22. J Exp Biol. 2008 Sep;211(Pt 18):3041-56 [PMID: 18775941]
  23. Nature. 2006 Oct 26;443(7114):931-49 [PMID: 17073008]
  24. Cell. 2001 Dec 28;107(7):881-91 [PMID: 11779464]
  25. Bioinformatics. 2008 Feb 1;24(3):374-82 [PMID: 18204063]
  26. Nat Biotechnol. 2005 Feb;23(2):238-43 [PMID: 15654329]
  27. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13570-5 [PMID: 21825127]
  28. BMC Bioinformatics. 2006 Jun 02;7:280 [PMID: 16749936]
  29. BMC Syst Biol. 2007 Jan 26;1:8 [PMID: 17408515]
  30. PLoS Med. 2008 Sep 30;5(9):e184 [PMID: 18767902]
  31. Nature. 1993 Jul 15;364(6434):238-40 [PMID: 8321320]
  32. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2669-74 [PMID: 20133768]
  33. Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9309-14 [PMID: 15184677]
  34. Nat Biotechnol. 2010 May;28(5):495-501 [PMID: 20436461]
  35. Science. 2011 Jun 3;332(6034):1161-2 [PMID: 21636765]
  36. Neuropsychopharmacology. 2008 Jan;33(1):3-17 [PMID: 17728700]
  37. Dev Neurobiol. 2012 Feb;72(2):153-66 [PMID: 21634017]
  38. J Insect Physiol. 2008 Jun;54(6):895-901 [PMID: 18355835]
  39. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16068-75 [PMID: 17065327]
  40. PLoS Biol. 2007 Mar;5(3):e62 [PMID: 17341131]
  41. Environ Health Perspect. 2000 Jun;108 Suppl 3:511-33 [PMID: 10852851]
  42. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 [PMID: 12883005]
  43. Nat Genet. 1998 Mar;18(3):231-6 [PMID: 9500544]
  44. Nature. 2008 Sep 18;455(7211):401-5 [PMID: 18724358]
  45. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11726-9 [PMID: 1465390]
  46. Bioinformatics. 2008 Oct 1;24(19):2256-7 [PMID: 18703586]
  47. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18020-5 [PMID: 21960440]
  48. Wiley Interdiscip Rev Syst Biol Med. 2010 Sep-Oct;2(5):566-576 [PMID: 20836048]
  49. Am Nat. 2002 Dec;160 Suppl 6:S160-72 [PMID: 18707474]
  50. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16352-7 [PMID: 17065326]
  51. Nat Genet. 2004 Feb;36(2):197-204 [PMID: 14730301]
  52. Nature. 2007 Nov 8;450(7167):219-32 [PMID: 17994088]
  53. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15400-5 [PMID: 19706434]

Grants

  1. R21 DA027548/NIDA NIH HHS
  2. R01 GM085233/NIGMS NIH HHS
  3. 1DP1OD006416/NIH HHS
  4. 1R01DK082605-01A1/NIDDK NIH HHS
  5. R01 DK082605/NIDDK NIH HHS
  6. 1R01GM085233-01/NIGMS NIH HHS
  7. DP1 OD006416/NIH HHS

MeSH Term

Animals
Bees
Behavior, Animal
Meta-Analysis as Topic
Transcription Factors
Transcription, Genetic
Transcriptome

Chemicals

Transcription Factors

Word Cloud

Created with Highcharts 10.0.0determinantsmeta-analysiscomplexbehaviortranscriptionregulatoryproblemmultiplesystemsbiologyphenotypestranscriptometechniquegenecombinationssharedfactorstoolsfundamentalsystematicallycombineinformationstatisticaltestsrigorouslyevaluatesingleoverarchinghypothesisoccursattemptingmapgenomicattributesBehaviorinfluencedintrinsicenvironmentalactlittleknowninteractmolecularleveldevelopedinformaticidentifiesstatisticallysignificantmeta-associationsexpressionpatternsfactorDeployingbrainprofilesca400individualbeesshowdiverserelyrelationshipsrevealedconsideredvariablerulessuggestinguseddistinctwaysdifferentcodemissedtraditionalcoexpressioncis-regulatoryanalyticmethodsexpectwillusefulbroadarrayproblemsfieldsNewrevealcommontranscriptionalbasis

Similar Articles

Cited By (27)