Förster resonance energy transfer-based sensor targeting endoplasmic reticulum reveals highly oxidative environment.

Vladimir L Kolossov, Matthew T Leslie, Abhishek Chatterjee, Bridget M Sheehan, Paul J A Kenis, H Rex Gaskins
Author Information
  1. Vladimir L Kolossov: Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. viadimer@illinois.edu

Abstract

The glutathione thiol/disulfide couple is the major redox buffer in the endoplasmic reticulum (ER); however, mechanisms by which it contributes to the tightly regulated redox environment of this intracellular organelle are poorly understood. The recent development of genetically encoded, ratiometric, single green fluorescent protein-based redox-sensitive (roGFP) sensors adjusted for more oxidative environments enables non-invasive measurement of the ER redox environment in living cells. In turn, Förster resonance energy transfer (FRET) sensors based on two fluorophore probes represent an alternative strategy for ratiometric signal acquisition. In previous work, we described the FRET-based redox sensor CY-RL7 with a relatively high midpoint redox potential of -143 mV, which is required for monitoring glutathione potentials in the comparatively high oxidative environment of the ER. Here, the efficacy of the CY-RL7 probe was ascertained in the cytosol and ER of live cells with fluorescence microscopy and flow cytometry. The sensor was found to be fully reduced at steady state in the cytosol and became fully oxidized in response to treatment with 1-chloro-2,4-dinitrobenzene, a depletor of reduced glutathione (GSH). In contrast, the probe was strongly oxidized (88%) upon expression in the ER of cultured cells. We also examined the responsiveness of the ER sensor to perturbations in cellular glutathione homeostasis. We observed that the reductive level of the FRET sensor was increased two-fold to about 28% in cells pretreated with N-acetylcysteine, a substrate for GSH synthesis. Finally, we evaluated the responsiveness of CY-RL7 and roGFP1-iL to various perturbations of cellular glutathione homeostasis to address the divergence in the specificity of these two probes. Together, the present data generated with genetically encoded green fluorescent protein (GFP)-based glutathione probes highlight the complexity of the ER redox environment and indicate that the ER glutathione pool may be more oxidized than is currently considered.

References

  1. J Mol Biol. 2011 Jun 3;409(2):238-49 [PMID: 21435343]
  2. Science. 1992 Sep 11;257(5076):1496-502 [PMID: 1523409]
  3. Exp Biol Med (Maywood). 2008 Feb;233(2):238-48 [PMID: 18222979]
  4. J Cell Sci. 2011 Jul 15;124(Pt 14):2349-56 [PMID: 21693587]
  5. FEBS J. 2007 Feb;274(3):630-58 [PMID: 17288551]
  6. EMBO Rep. 2006 Mar;7(3):271-5 [PMID: 16607396]
  7. Mol Biol Cell. 2011 May;22(9):1440-51 [PMID: 21372177]
  8. Free Radic Biol Med. 2007 Jul 15;43(2):300-16 [PMID: 17603939]
  9. Physiology (Bethesda). 2004 Aug;19:207-15 [PMID: 15304635]
  10. Science. 2000 Nov 24;290(5496):1571-4 [PMID: 11090354]
  11. Free Radic Biol Med. 2001 Jun 1;30(11):1191-212 [PMID: 11368918]
  12. Curr Opin Cell Biol. 2011 Apr;23(2):239-52 [PMID: 21288706]
  13. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19264-9 [PMID: 19033456]
  14. FEBS Lett. 2007 Jul 31;581(19):3634-40 [PMID: 17467703]
  15. FEMS Microbiol Lett. 2010 May;306(1):61-6 [PMID: 20337710]
  16. Nature. 2003 Dec 18;426(6968):891-4 [PMID: 14685249]
  17. Free Radic Biol Med. 2008 Mar 15;44(6):921-37 [PMID: 18155672]
  18. Antioxid Redox Signal. 2009 May;11(5):981-3 [PMID: 19186997]
  19. Antioxid Redox Signal. 2008 May;10(5):963-72 [PMID: 18205546]
  20. EMBO J. 2001 Nov 1;20(21):5853-62 [PMID: 11689426]
  21. Nat Methods. 2008 Jun;5(6):553-9 [PMID: 18469822]
  22. J Biol Chem. 2004 Feb 13;279(7):5257-62 [PMID: 14630926]
  23. Cancer Res. 1986 Dec;46(12 Pt 1):6105-10 [PMID: 3779630]
  24. Nat Biotechnol. 2002 Jan;20(1):87-90 [PMID: 11753368]
  25. Plant Physiol. 2006 Jun;141(2):397-403 [PMID: 16760494]
  26. J Biol Chem. 2004 May 21;279(21):22284-93 [PMID: 14985369]
  27. Cell. 2008 Nov 28;135(5):933-47 [PMID: 19026441]
  28. Antioxid Redox Signal. 2010 Sep 1;13(5):621-50 [PMID: 20088706]
  29. Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):354-61 [PMID: 16677081]
  30. Biophys J. 2001 Oct;81(4):2395-402 [PMID: 11566809]
  31. Antioxid Redox Signal. 2010 Jul 1;13(1):77-108 [PMID: 20001734]
  32. Integr Biol (Camb). 2011 Mar;3(3):208-17 [PMID: 21183971]
  33. Mol Cell Biol. 2010 Aug;30(15):3758-66 [PMID: 20498274]
  34. Plant J. 2007 Dec;52(5):973-86 [PMID: 17892447]
  35. Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1865-79 [PMID: 16987039]
  36. EMBO J. 2010 Dec 15;29(24):4185-97 [PMID: 21057456]
  37. Nat Rev Mol Cell Biol. 2010 Jan;11(1):50-61 [PMID: 19997129]
  38. Radiat Res. 1986 Mar;105(3):351-69 [PMID: 3754339]
  39. J Biol Chem. 2004 Mar 26;279(13):13044-53 [PMID: 14722062]
  40. J Biol Chem. 2006 Feb 24;281(8):5017-5025 [PMID: 16368693]
  41. Exp Biol Med (Maywood). 2011 Jun 1;236(6):681-91 [PMID: 21606117]
  42. EMBO J. 2010 Oct 6;29(19):3318-29 [PMID: 20802462]
  43. Cell Death Differ. 2006 Mar;13(3):385-92 [PMID: 16397584]
  44. J Intern Med. 2010 Nov;268(5):432-48 [PMID: 20964735]
  45. Biochemistry. 2008 Aug 19;47(33):8678-88 [PMID: 18652491]
  46. Antioxid Redox Signal. 2012 Apr 1;16(7):698-704 [PMID: 21883046]
  47. Ageing Res Rev. 2010 Jul;9(3):211-7 [PMID: 20416402]
  48. Anal Biochem. 1990 Nov 1;190(2):212-9 [PMID: 2291468]
  49. J Cell Sci. 2011 Mar 15;124(Pt 6):847-55 [PMID: 21378306]

Grants

  1. R33 CA137719/NCI NIH HHS
  2. R33-CA137719/NCI NIH HHS

MeSH Term

Animals
CHO Cells
Cells, Cultured
Colonic Neoplasms
Cricetinae
Cricetulus
Endoplasmic Reticulum
Female
Fluorescence Resonance Energy Transfer
Glutathione
HCT116 Cells
Humans
Oocytes
Oxidation-Reduction
Sensitivity and Specificity
Signal Transduction

Chemicals

Glutathione

Word Cloud

Created with Highcharts 10.0.0ERglutathioneredoxenvironmentsensorcellsoxidativeprobesCY-RL7oxidizedendoplasmicreticulumgeneticallyencodedratiometricgreenfluorescentsensorsFörsterresonanceenergyFRETtwohighprobecytosolfullyreducedGSHresponsivenessperturbationscellularhomeostasisthiol/disulfidecouplemajorbufferhowevermechanismscontributestightlyregulatedintracellularorganellepoorlyunderstoodrecentdevelopmentsingleprotein-basedredox-sensitiveroGFPadjustedenvironmentsenablesnon-invasivemeasurementlivingturntransferbasedfluorophorerepresentalternativestrategysignalacquisitionpreviousworkdescribedFRET-basedrelativelymidpointpotential-143mVrequiredmonitoringpotentialscomparativelyefficacyascertainedlivefluorescencemicroscopyflowcytometryfoundsteadystatebecameresponsetreatment1-chloro-24-dinitrobenzenedepletorcontraststrongly88%uponexpressionculturedalsoexaminedobservedreductivelevelincreasedtwo-fold28%pretreatedN-acetylcysteinesubstratesynthesisFinallyevaluatedroGFP1-iLvariousaddressdivergencespecificityTogetherpresentdatageneratedproteinGFP-basedhighlightcomplexityindicatepoolmaycurrentlyconsideredtransfer-basedtargetingrevealshighly

Similar Articles

Cited By