A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4.

Lu Gaohua, Khaled Abduljalil, Masoud Jamei, Trevor N Johnson, Amin Rostami-Hodjegan
Author Information
  1. Lu Gaohua: Simcyp Limited, Sheffield, UK.

Abstract

AIMS: Pregnant women are usually not part of the traditional drug development programme. Pregnancy is associated with major biological and physiological changes that alter the pharmacokinetics (PK) of drugs. Prediction of the changes to drug exposure in this group of patients may help to prevent under- or overtreatment. We have used a pregnancy physiologically based pharmacokinetic (p-PBPK) model to assess the likely impact of pregnancy on three model compounds, namely caffeine, metoprolol and midazolam, based on the knowledge of their disposition in nonpregnant women and information from in vitro studies.
METHODS: A perfusion-limited form of a 13-compartment full-PBPK model (Simcyp® Simulator) was used for the nonpregnant women, and this was extended to the pregnant state by applying known changes to all model components (including the gestational related activity of specific cytochrome P450 enzymes) and through the addition of an extra compartment to represent the fetoplacental unit. The uterus and the mammary glands were grouped into the muscle compartment. The model was implemented in Matlab Simulink and validated using clinical observations.
RESULTS: The p-PBPK model predicted the PK changes of three model compounds (namely caffeine, metoprolol and midazolam) for CYP1A2, CYP2D6 and CYP3A4 during pregnancy within twofold of observed values. The changes during the third trimester were predicted to be a 100% increase, a 30% decrease and a 35% decrease in the exposure of caffeine, metoprolol and midazolam, respectively, compared with the nonpregnant women.
CONCLUSIONS: In the absence of clinical data, the in silico prediction of PK behaviour during pregnancy can provide a valuable aid to dose adjustment in pregnant women. The performance of the model for drugs metabolized by a single enzyme to different degrees (high and low extraction) and for drugs that are eliminated by several different routes warrants further study.

References

  1. Clin Pharmacokinet. 2004;43(8):487-514 [PMID: 15170365]
  2. J Reprod Med. 1995 Mar;40(3):186-8 [PMID: 7776301]
  3. Drug Metab Dispos. 2009 Jul;37(7):1528-38 [PMID: 19359404]
  4. Can Med Assoc J. 1982 Sep 1;127(5):377-80 [PMID: 7104915]
  5. Ital J Anat Embryol. 1995;100 Suppl 1:177-84 [PMID: 11322290]
  6. Expert Opin Drug Metab Toxicol. 2007 Aug;3(4):557-71 [PMID: 17696806]
  7. Br J Clin Pharmacol. 1993 Dec;36(6):531-8 [PMID: 12959269]
  8. Br J Pharmacol. 2009 Oct;158(3):665-78 [PMID: 19788499]
  9. Curr Drug Metab. 2012 Jul;13(6):695-720 [PMID: 22452453]
  10. Crit Rev Toxicol. 2003;33(2):137-211 [PMID: 12708613]
  11. J Pharm Sci. 2006 Jun;95(6):1238-57 [PMID: 16639716]
  12. J Clin Psychopharmacol. 2008 Dec;28(6):646-53 [PMID: 19011433]
  13. Semin Perinatol. 1981 Oct;5(4):310-4 [PMID: 7302604]
  14. J Neuropathol Exp Neurol. 2008 Jan;67(1):50-61 [PMID: 18091560]
  15. J Toxicol Environ Health. 1997 Dec 12;52(5):385-401 [PMID: 9388532]
  16. Am J Perinatol. 2003 Feb;20(2):69-76 [PMID: 12660911]
  17. Teratology. 1994 Feb;49(2):90-103 [PMID: 8016750]
  18. Growth Dev Aging. 1999 Spring-Summer;63(1-2):49-59 [PMID: 10885857]
  19. Comput Biol Med. 1998 Jul;28(4):359-64 [PMID: 9805196]
  20. Glia. 2001 Nov;36(2):145-55 [PMID: 11596123]
  21. Placenta. 2011 Mar;32 Suppl 2:S196-202 [PMID: 21272934]
  22. Clin Pharmacol Ther. 1985 Jun;37(6):688-92 [PMID: 4006368]
  23. J Pharm Sci. 2005 Jun;94(6):1259-76 [PMID: 15858854]
  24. Clin Pharmacokinet. 2005;44(10):989-1008 [PMID: 16176115]
  25. Am J Obstet Gynecol. 2005 Sep;193(3 Pt 2):901-7 [PMID: 16157085]
  26. Expert Opin Drug Metab Toxicol. 2009 Dec;5(12):1483-99 [PMID: 19785513]
  27. J Clin Psychiatry. 2008 Apr;69(4):652-8 [PMID: 18426260]
  28. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5454-7 [PMID: 19163951]
  29. Nat Rev Drug Discov. 2007 Feb;6(2):140-8 [PMID: 17268485]
  30. Risk Anal. 1999 Aug;19(4):547-58 [PMID: 10765421]
  31. Teratology. 1997 Jun;55(6):373-80 [PMID: 9294882]
  32. Clin Pharmacol Ther. 2008 Jan;83(1):181-3 [PMID: 18073777]
  33. Am J Obstet Gynecol. 2005 Feb;192(2):633-9 [PMID: 15696014]
  34. Annu Rev Pharmacol Toxicol. 2003;43:629-56 [PMID: 12415123]
  35. Depress Anxiety. 2000;11(2):51-7 [PMID: 10812529]
  36. Eur J Pharm Sci. 2011 Mar 18;42(4):318-31 [PMID: 21211564]
  37. Gend Med. 2006 Sep;3(3):169-82 [PMID: 17081950]
  38. Eur J Clin Pharmacol. 1981;21(2):121-6 [PMID: 7341280]
  39. Expert Opin Drug Metab Toxicol. 2009 Feb;5(2):211-23 [PMID: 19199378]
  40. Comput Methods Programs Biomed. 1997 Jul;53(3):201-24 [PMID: 9230455]
  41. J Pharmacokinet Pharmacodyn. 2007 Apr;34(2):141-56 [PMID: 17053980]
  42. Int J Pharm Pract. 2010 Aug;18(4):226-9 [PMID: 20636674]
  43. Dev Pharmacol Ther. 1983;6(5):315-22 [PMID: 6628163]
  44. Clin Pharmacol Ther. 2001 Aug;70(2):121-5 [PMID: 11503005]
  45. Clin Pharmacol Ther. 1997 Oct;62(4):400-7 [PMID: 9357391]
  46. Clin Pharmacol Ther. 2008 Aug;84(2):248-53 [PMID: 18288078]
  47. Clin Pharmacokinet. 2012 Jun 1;51(6):365-96 [PMID: 22515555]

MeSH Term

Adult
Caffeine
Cytochrome P-450 CYP1A2
Cytochrome P-450 CYP2D6
Cytochrome P-450 CYP3A
Drug Design
Female
Humans
Metoprolol
Midazolam
Models, Biological
Pregnancy
Pregnancy Trimester, Third
Young Adult

Chemicals

Caffeine
Cytochrome P-450 CYP1A2
Cytochrome P-450 CYP2D6
Cytochrome P-450 CYP3A
CYP3A4 protein, human
Metoprolol
Midazolam

Word Cloud

Created with Highcharts 10.0.0modelwomenchangespregnancydrugsPKbasedp-PBPKcaffeinemetoprololmidazolamnonpregnantdrugexposureusedphysiologicallypharmacokineticthreecompoundsnamelydispositionpregnantcompartmentclinicalpredictedCYP1A2CYP2D6CYP3A4decreasemetabolizeddifferentAIMS:PregnantusuallyparttraditionaldevelopmentprogrammePregnancyassociatedmajorbiologicalphysiologicalalterpharmacokineticsPredictiongrouppatientsmayhelppreventunder-overtreatmentassesslikelyimpactknowledgeinformationvitrostudiesMETHODS:perfusion-limitedform13-compartmentfull-PBPKSimcyp®SimulatorextendedstateapplyingknowncomponentsincludinggestationalrelatedactivityspecificcytochromeP450enzymesadditionextrarepresentfetoplacentalunituterusmammaryglandsgroupedmuscleimplementedMatlabSimulinkvalidatedusingobservationsRESULTS:withintwofoldobservedvaluesthirdtrimester100%increase30%35%respectivelycomparedCONCLUSIONS:absencedatasilicopredictionbehaviourcanprovidevaluableaiddoseadjustmentperformancesingleenzymedegreeshighlowextractioneliminatedseveralrouteswarrantsstudy

Similar Articles

Cited By