X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the β-subunit of succinyl-CoA synthetase (SUCLA2).

David F Bishop, Vassili Tchaikovskii, A Victor Hoffbrand, Marie E Fraser, Steven Margolis
Author Information
  1. David F Bishop: Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA.

Abstract

Mutations in the erythroid-specific aminolevulinic acid synthase gene (ALAS2) cause X-linked sideroblastic anemia (XLSA) by reducing mitochondrial enzymatic activity. Surprisingly, a patient with the classic XLSA phenotype had a novel exon 11 mutation encoding a recombinant enzyme (p.Met567Val) with normal activity, kinetics, and stability. Similarly, both an expressed adjacent XLSA mutation, p.Ser568Gly, and a mutation (p.Phe557Ter) lacking the 31 carboxyl-terminal residues also had normal or enhanced activity, kinetics, and stability. Because ALAS2 binds to the β subunit of succinyl-CoA synthetase (SUCLA2), the mutant proteins were tested for their ability to bind to this protein. Wild type ALAS2 bound strongly to a SUCLA2 affinity column, but the adjacent XLSA mutant enzymes and the truncated mutant did not bind. In contrast, vitamin B6-responsive XLSA mutations p.Arg452Cys and p.Arg452His, with normal in vitro enzyme activity and stability, did not interfere with binding to SUCLA2 but instead had loss of positive cooperativity for succinyl-CoA binding, an increased K(m) for succinyl-CoA, and reduced vitamin B6 affinity. Consistent with the association of SUCLA2 binding with in vivo ALAS2 activity, the p.Met567GlufsX2 mutant protein that causes X-linked protoporphyria bound strongly to SUCLA2, highlighting the probable role of an ALAS2-succinyl-CoA synthetase complex in the regulation of erythroid heme biosynthesis.

References

  1. J Bioenerg Biomembr. 1995 Apr;27(2):161-8 [PMID: 7592563]
  2. Protein Sci. 1995 May;4(5):1001-6 [PMID: 7663334]
  3. Biochim Biophys Acta. 1978 May 11;524(1):109-20 [PMID: 207338]
  4. J Clin Invest. 2000 Mar;105(6):757-64 [PMID: 10727444]
  5. Int J Biochem Cell Biol. 2004 Feb;36(2):281-95 [PMID: 14643893]
  6. Protein Sci. 1993 Nov;2(11):1959-65 [PMID: 8268805]
  7. Biochem J. 2005 Aug 1;389(Pt 3):885-98 [PMID: 15823094]
  8. Brain. 2007 Mar;130(Pt 3):862-74 [PMID: 17301081]
  9. Haematologica. 1998 Jan;83(1):56-70 [PMID: 9542324]
  10. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4028-32 [PMID: 1570328]
  11. Am J Med. 2004 Apr 1;116(7):501-2 [PMID: 15047047]
  12. Am J Hum Genet. 2008 Sep;83(3):408-14 [PMID: 18760763]
  13. Blood. 1994 Dec 1;84(11):3915-24 [PMID: 7949148]
  14. Genomics. 1990 Jun;7(2):207-14 [PMID: 2347585]
  15. Br J Haematol. 1999 Jul;106(1):175-7 [PMID: 10444183]
  16. Mitochondrion. 2010 Jun;10(4):335-41 [PMID: 20197121]
  17. J Biol Chem. 1956 Mar;219(1):435-46 [PMID: 13295297]
  18. Biochim Biophys Acta. 1991 Aug 6;1074(3):339-46 [PMID: 1653609]
  19. EMBO J. 2005 Sep 21;24(18):3166-77 [PMID: 16121195]
  20. N Engl J Med. 1994 Mar 10;330(10):675-9 [PMID: 8107717]
  21. Biochim Biophys Acta. 2011 Nov;1814(11):1467-73 [PMID: 21215825]
  22. Hum Genet. 2004 Nov;115(6):533 [PMID: 15678586]
  23. J Biol Chem. 2010 Apr 30;285(18):13704-11 [PMID: 20194506]
  24. Int J Hematol. 2010 Oct;92(3):425-31 [PMID: 20848343]
  25. Brain. 2007 Mar;130(Pt 3):853-61 [PMID: 17287286]
  26. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5883-7 [PMID: 8016083]
  27. Eur J Haematol. 2006 Jan;76(1):33-41 [PMID: 16343269]
  28. Am J Hum Genet. 2005 Jun;76(6):1081-6 [PMID: 15877282]
  29. J Biol Chem. 1963 Feb;238:811-20 [PMID: 13995445]
  30. Blood Cells Mol Dis. 2006 Mar-Apr;36(2):292-7 [PMID: 16446107]
  31. Blood. 2000 Jul 15;96(2):740-6 [PMID: 10887143]
  32. J Biol Chem. 1999 Apr 30;274(18):12222-8 [PMID: 10212188]
  33. Exp Hematol. 2012 Jun;40(6):477-86.e1 [PMID: 22269113]
  34. Blood. 1999 Mar 1;93(5):1757-69 [PMID: 10029606]
  35. Br J Haematol. 2008 Oct;143(1):27-38 [PMID: 18637800]
  36. Blood. 2002 Dec 1;100(12):4236-8 [PMID: 12393718]
  37. J Clin Invest. 1995 Oct;96(4):2090-6 [PMID: 7560104]

Grants

  1. R01DK40895/NIDDK NIH HHS

MeSH Term

5-Aminolevulinate Synthetase
Adult
Amino Acid Substitution
Anemia, Sideroblastic
Enzyme Stability
Genetic Diseases, X-Linked
Heme
Humans
Male
Mutation, Missense
Protein Binding
Protoporphyria, Erythropoietic
Succinate-CoA Ligases
Vitamin B 6

Chemicals

Heme
Vitamin B 6
5-Aminolevulinate Synthetase
ALAS2 protein, human
Succinate-CoA Ligases
SUCLA2 protein, human

Word Cloud

Created with Highcharts 10.0.0pSUCLA2ALAS2XLSAactivitysuccinyl-CoAmutantbindingX-linkedmutationnormalstabilitysynthetasecausesideroblasticanemiaenzymekineticsadjacentcarboxyl-terminalbindproteinboundstronglyaffinityvitaminmutationslossMutationserythroid-specificaminolevulinicacidsynthasegenereducingmitochondrialenzymaticSurprisinglypatientclassicphenotypenovelexon11encodingrecombinantMet567ValSimilarlyexpressedSer568GlyPhe557Terlacking31residuesalsoenhancedbindsβsubunitproteinstestedabilityWildtypecolumnenzymestruncatedcontrastB6-responsiveArg452CysArg452HisvitrointerfereinsteadpositivecooperativityincreasedKmreducedB6ConsistentassociationvivoMet567GlufsX2causesprotoporphyriahighlightingprobableroleALAS2-succinyl-CoAcomplexregulationerythroidhemebiosynthesisdueβ-subunit

Similar Articles

Cited By