Ras guanine nucleotide releasing factor 1 (RasGrf1) enhancement of Trk receptor-mediated neurite outgrowth requires activation of both H-Ras and Rac.

Asghar Talebian, Kim Robinson-Brookes, James I S MacDonald, Susan O Meakin
Author Information
  1. Asghar Talebian: Molecular Brain Research Group, Laboratory of Neural Signaling, Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, ON, Canada N6A 5K8.

Abstract

We previously demonstrated that the guanine nucleotide exchange factor, RasGrf1, binds nerve growth factor (NGF)-activated TrkA and facilitates neurotrophin-induced neurite outgrowth in PC12 cells. RasGrf1 can activate both Ras and Rac, via intrinsic Cdc25 and DH domains, respectively, suggesting that the activation of both could contribute to this process. Previous studies have assayed constitutive neurite outgrowth following RasGrf1 over-expression in PC12 cells, in either the absence or presence of ectopic H-Ras, and have suggested an essential role for either Ras or Rac depending on the presence of H-Ras over-expression. In contrast, in this study, we have addressed the mechanism of how RasGrf1 facilitates neurite outgrowth in response to the neurotrophins, NGF and BDNF. Using Ras/Rac activation assays and site-directed RasGrf1 mutants, we find that both Ras and Rac are essential to neurotrophin-induced neurite outgrowth. Moreover, we find that H-Ras over-expression rescues the loss of neurite outgrowth observed with a Rac minus mutant and that RasGrf1 differentially stimulates NGF-dependent activation of Rac or Ras, depending on cell type. Collectively, these studies clarify the mechanism of how RasGrf1 expression facilitates neurotrophin-induced neurite outgrowth. Moreover, they suggest that H-Ras over-expression should be used with caution to measure phenotypic responses.

References

  1. J Biol Chem. 2001 May 25;276(21):18169-77 [PMID: 11278445]
  2. Mol Biol Cell. 2006 May;17(5):2177-89 [PMID: 16481401]
  3. Cell. 1992 Aug 7;70(3):401-10 [PMID: 1643658]
  4. J Biol Chem. 2000 Feb 25;275(8):5441-6 [PMID: 10681520]
  5. Mol Cell Biol. 2002 Jun;22(12):4073-85 [PMID: 12024021]
  6. J Biol Chem. 2007 Jan 26;282(4):2333-45 [PMID: 17135267]
  7. J Neurochem. 1998 Nov;71(5):1875-88 [PMID: 9798911]
  8. Cell. 1997 May 2;89(3):457-67 [PMID: 9150145]
  9. J Biol Chem. 2003 Apr 11;278(15):13278-85 [PMID: 12538592]
  10. Cell. 1995 Jun 30;81(7):1147-57 [PMID: 7600582]
  11. J Biol Chem. 1999 Dec 17;274(51):36656-62 [PMID: 10593969]
  12. Mol Biol Cell. 2008 Mar;19(3):765-75 [PMID: 18094044]
  13. Nature. 1995 Aug 10;376(6540):524-7 [PMID: 7637786]
  14. Brain Res Mol Brain Res. 1997 Aug;48(1):140-4 [PMID: 9379834]
  15. Science. 2008 Jul 4;321(5885):136-40 [PMID: 18556515]
  16. J Biol Chem. 1999 Aug 20;274(34):23850-7 [PMID: 10446149]
  17. J Biol Chem. 1999 Dec 24;274(52):37379-84 [PMID: 10601308]
  18. Nature. 1996 Jul 18;382(6588):268-72 [PMID: 8717044]
  19. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424-8 [PMID: 1065897]
  20. J Biol Chem. 2001 Jan 19;276(3):1742-9 [PMID: 11018028]
  21. J Cell Biol. 1986 Mar;102(3):830-43 [PMID: 3005338]
  22. Eur J Neurosci. 1995 Feb 1;7(2):344-50 [PMID: 7757268]
  23. J Biol Chem. 1998 Jan 16;273(3):1782-7 [PMID: 9430727]
  24. Mol Cell Biol. 1999 Jul;19(7):4611-22 [PMID: 10373510]
  25. J Biol Chem. 1999 Apr 2;274(14):9861-70 [PMID: 10092678]
  26. Mol Cell Biol. 2005 Jun;25(12):5106-18 [PMID: 15923627]
  27. J Cell Biol. 1978 Sep;78(3):747-55 [PMID: 701359]
  28. Annu Rev Biochem. 2003;72:609-42 [PMID: 12676795]
  29. Genes Cells. 2006 Sep;11(9):1097-113 [PMID: 16923128]
  30. Science. 2002 May 31;296(5573):1648-9 [PMID: 12040181]
  31. J Biol Chem. 1992 Aug 25;267(24):17472-7 [PMID: 1380963]
  32. J Biol Chem. 2005 Jan 7;280(1):225-35 [PMID: 15513915]
  33. Mol Cell Biol. 1996 Sep;16(9):4888-96 [PMID: 8756648]
  34. J Biol Chem. 2000 Aug 25;275(34):26441-8 [PMID: 10840034]
  35. Philos Trans R Soc Lond B Biol Sci. 2006 Sep 29;361(1473):1545-64 [PMID: 16939974]
  36. J Biol Chem. 2000 Sep 22;275(38):29788-93 [PMID: 10882715]
  37. Neuropharmacology. 2001 Nov;41(6):791-800 [PMID: 11640934]
  38. Curr Biol. 1994 May 1;4(5):385-93 [PMID: 7922352]
  39. Circ Res. 2006 Dec 8;99(12):1338-46 [PMID: 17095724]

MeSH Term

Animals
Brain-Derived Neurotrophic Factor
HEK293 Cells
Humans
Mice
Mutagenesis, Site-Directed
Mutation
Nerve Growth Factor
Neurites
PC12 Cells
Proto-Oncogene Proteins p21(ras)
Rats
Receptor, trkA
Receptor, trkB
Receptors, Nerve Growth Factor
Up-Regulation
rac GTP-Binding Proteins
ras-GRF1

Chemicals

Brain-Derived Neurotrophic Factor
Rasgrf1 protein, mouse
Receptors, Nerve Growth Factor
ras-GRF1
Nerve Growth Factor
Receptor, trkA
Receptor, trkB
Proto-Oncogene Proteins p21(ras)
rac GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0RasGrf1neuriteoutgrowthRacRasH-Rasactivationover-expressionfactorfacilitatesneurotrophin-inducedguaninenucleotideNGFPC12cellsstudieseitherpresenceessentialdependingmechanismfindMoreoverpreviouslydemonstratedexchangebindsnervegrowth-activatedTrkAcanactivateviaintrinsicCdc25DHdomainsrespectivelysuggestingcontributeprocessPreviousassayedconstitutivefollowingabsenceectopicsuggestedrolecontraststudyaddressedresponseneurotrophinsBDNFUsingRas/Racassayssite-directedmutantsrescueslossobservedminusmutantdifferentiallystimulatesNGF-dependentcelltypeCollectivelyclarifyexpressionsuggestusedcautionmeasurephenotypicresponsesreleasing1enhancementTrkreceptor-mediatedrequires

Similar Articles

Cited By