Identification of SPLUNC1's ENaC-inhibitory domain yields novel strategies to treat sodium hyperabsorption in cystic fibrosis airways.

Carey A Hobbs, Maxime G Blanchard, Stephan Kellenberger, Sompop Bencharit, Rui Cao, Mehmet Kesimer, William G Walton, Matthew R Redinbo, M Jackson Stutts, Robert Tarran
Author Information
  1. Carey A Hobbs: Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Prosthodontics, University of North Carolina, Chapel Hill, 7125 Thurston Bowles Bldg., Chapel Hill, NC 27599-7248, USA.

Abstract

The epithelial sodium channel (ENaC) is responsible for Na+ and fluid absorption across colon, kidney, and airway epithelia. We have previously identified SPLUNC1 as an autocrine inhibitor of ENaC. We have now located the ENaC inhibitory domain of SPLUNC1 to SPLUNC1's N terminus, and a peptide corresponding to this domain, G22-A39, inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold). However, G22-A39 had no effect on the structurally related acid-sensing ion channels, indicating specificity for ENaC. G22-A39 preferentially bound to the β-ENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Addition of G22-A39 to CF human bronchial epithelial cultures (HBECs) resulted in an increase in airway surface liquid height from 4.2±0.6 to 7.9±0.6 μm, comparable to heights seen in normal HBECs, even in the presence of neutrophil elastase. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, which suggests that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the G22-A39 peptide suggests that this peptide may be suitable for treating CF lung disease.

References

  1. Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H379-85 [PMID: 17993595]
  2. J Biol Chem. 2010 Nov 5;285(45):35216-23 [PMID: 20817728]
  3. Int J Biochem Cell Biol. 2008;40(6-7):1238-45 [PMID: 18395488]
  4. Physiol Rev. 1997 Apr;77(2):359-96 [PMID: 9114818]
  5. Genome Biol. 2005;6(3):106 [PMID: 15774032]
  6. Mol Cell. 2001 Jul;8(1):149-58 [PMID: 11511368]
  7. Methods Mol Biol. 2011;742:285-310 [PMID: 21547740]
  8. J Clin Invest. 2002 Mar;109(5):571-7 [PMID: 11877463]
  9. Respir Res. 2007 Nov 07;8:79 [PMID: 17988392]
  10. J Biol Chem. 2006 Jul 7;281(27):18901-7 [PMID: 16690613]
  11. Annu Rev Physiol. 2009;71:361-79 [PMID: 18928407]
  12. Channels (Austin). 2010 Jul-Aug;4(4):255-9 [PMID: 20519934]
  13. Am J Physiol. 1994 Dec;267(6 Pt 1):C1682-90 [PMID: 7810611]
  14. J Biol Chem. 2004 Sep 10;279(37):38448-57 [PMID: 15247234]
  15. Science. 1995 Aug 11;269(5225):847-50 [PMID: 7543698]
  16. J Biol Chem. 2007 Mar 2;282(9):6153-60 [PMID: 17199078]
  17. PLoS One. 2010 Oct 07;5(10):e13224 [PMID: 20949060]
  18. J Biol Chem. 1994 Apr 29;269(17):12981-6 [PMID: 8175716]
  19. J Mol Biol. 1999 Sep 17;292(2):195-202 [PMID: 10493868]
  20. Mol Cell Biochem. 2008 Feb;309(1-2):191-7 [PMID: 18049866]
  21. J Am Soc Nephrol. 2002 May;13(5):1385-9 [PMID: 11961028]
  22. J Gen Physiol. 2006 May;127(5):591-604 [PMID: 16636206]
  23. N Engl J Med. 2006 Jan 19;354(3):291-3 [PMID: 16421371]
  24. J Physiol. 2006 Jul 15;574(Pt 2):333-47 [PMID: 16690707]
  25. Am J Physiol Renal Physiol. 2008 Jan;294(1):F47-52 [PMID: 18032549]
  26. J Biol Chem. 2003 Sep 26;278(39):37073-82 [PMID: 12871941]
  27. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11412-7 [PMID: 19541605]
  28. J Neurosci. 2009 Nov 11;29(45):14371-80 [PMID: 19906984]
  29. Methods Mol Med. 2002;70:111-28 [PMID: 11917517]
  30. J Immunol. 2007 Sep 15;179(6):3995-4002 [PMID: 17785838]
  31. N Engl J Med. 2005 May 12;352(19):1992-2001 [PMID: 15888700]
  32. Methods Mol Biol. 2012;842:67-79 [PMID: 22259130]
  33. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W563-8 [PMID: 20507913]
  34. Am J Physiol Lung Cell Mol Physiol. 2009 Jan;296(1):L92-L100 [PMID: 18931053]
  35. J Biol Chem. 2011 Jan 7;286(1):649-60 [PMID: 20974852]
  36. J Biol Chem. 2002 Mar 8;277(10):8338-45 [PMID: 11756432]
  37. FASEB J. 2000 Feb;14(2):231-41 [PMID: 10657980]
  38. Neuron. 2000 Apr;26(1):133-41 [PMID: 10798398]
  39. Pflugers Arch. 2011 Jan;461(1):123-39 [PMID: 20924599]
  40. Nature. 1994 Feb 3;367(6462):463-7 [PMID: 8107805]
  41. Biochem Soc Trans. 2011 Aug;39(4):1012-6 [PMID: 21787339]
  42. J Clin Invest. 2000 Jan;105(1):45-53 [PMID: 10619860]
  43. Proteomics. 2006 Apr;6(7):2314-25 [PMID: 16518875]
  44. EMBO J. 2004 Apr 7;23(7):1516-25 [PMID: 15044953]
  45. Am J Pathol. 2011 May;178(5):2159-67 [PMID: 21514430]

Grants

  1. R01 HL103940/NHLBI NIH HHS
  2. P01 HL034322/NHLBI NIH HHS
  3. P30 DK065988/NIDDK NIH HHS
  4. 5 P30 DK 065988-08/NIDDK NIH HHS
  5. R01 HL108927/NHLBI NIH HHS
  6. R01HL103940/NHLBI NIH HHS
  7. R01HL108927/NHLBI NIH HHS

MeSH Term

Absorption
Acid Sensing Ion Channels
Animals
Blotting, Western
Cell Line
Circular Dichroism
Cystic Fibrosis
Electrophysiology
Epithelial Sodium Channels
Glycoproteins
Humans
Oocytes
Peptides
Phosphoproteins
Protein Structure, Tertiary
Sodium
Xenopus

Chemicals

Acid Sensing Ion Channels
BPIFA1 protein, human
Epithelial Sodium Channels
Glycoproteins
Peptides
Phosphoproteins
Sodium

Word Cloud

Created with Highcharts 10.0.0ENaCG22-A39SPLUNC1domainpeptideCFmayepithelialsodiumairwayinhibitorySPLUNC1'scysticfibrosislungdiseaseHBECs6neutrophilelastasesuggestschannelresponsibleNa+fluidabsorptionacrosscolonkidneyepitheliapreviouslyidentifiedautocrineinhibitornowlocatedNterminuscorrespondinginhibitedactivitysimilardegreefull-length∼25foldHowevereffectstructurallyrelatedacid-sensingionchannelsindicatingspecificitypreferentiallyboundβ-ENaCsubunitglycosylation-dependentmannerhyperactivitycontributoryAdditionhumanbronchialculturesresultedincreasesurfaceliquidheight42±079±0μmcomparableheightsseennormalevenpresencedataalsoindicatecleavedawaymainmoleculestillactiveinflammationneutrophiliaFurthermorerobustinhibitionsuitabletreatingIdentificationENaC-inhibitoryyieldsnovelstrategiestreathyperabsorptionairways

Similar Articles

Cited By